RankGraph[g,l]
partitions the vertices into classes based on the shortest geodesic distance to a member of list l.


RankGraph
RankGraph[g,l]
partitions the vertices into classes based on the shortest geodesic distance to a member of list l.
Details and Options
- To use RankGraph, you first need to load the Combinatorica Package using Needs["Combinatorica`"].
See Also
Tech Notes
Related Guides
-
▪
- Displaying Graphs ▪
- Graphs & Networks ▪
- Graph Visualization ▪
- Computation on Graphs ▪
- Graph Construction & Representation ▪
- Graphs and Matrices ▪
- Graph Properties & Measurements ▪
- Graph Operations and Modifications ▪
- Statistical Analysis ▪
- Social Network Analysis ▪
- Graph Properties ▪
- Mathematical Data Formats ▪
- Discrete Mathematics
Text
Wolfram Research (2012), RankGraph, Wolfram Language function, https://reference.wolfram.com/language/Combinatorica/ref/RankGraph.html.
CMS
Wolfram Language. 2012. "RankGraph." Wolfram Language & System Documentation Center. Wolfram Research. https://reference.wolfram.com/language/Combinatorica/ref/RankGraph.html.
APA
Wolfram Language. (2012). RankGraph. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/Combinatorica/ref/RankGraph.html
BibTeX
@misc{reference.wolfram_2025_rankgraph, author="Wolfram Research", title="{RankGraph}", year="2012", howpublished="\url{https://reference.wolfram.com/language/Combinatorica/ref/RankGraph.html}", note=[Accessed: 14-August-2025]}
BibLaTeX
@online{reference.wolfram_2025_rankgraph, organization={Wolfram Research}, title={RankGraph}, year={2012}, url={https://reference.wolfram.com/language/Combinatorica/ref/RankGraph.html}, note=[Accessed: 14-August-2025]}