FourierCoefficient[expr,t,n]
gives the n coefficient in the Fourier exponential series expansion of expr, where expr is a periodic function of t with period 1.


FourierCoefficient
FourierCoefficient[expr,t,n]
gives the n coefficient in the Fourier exponential series expansion of expr, where expr is a periodic function of t with period 1.
Details and Options
- To use FourierCoefficient, you first need to load the Fourier Series Package using Needs["FourierSeries`"].
- The n
coefficient in the Fourier exponential series expansion of expr is by default defined to be Integrate[expr 2πnt,{t,-
,
}].
- If n is numeric, it should be an explicit integer.
- Different choices for the definition of the Fourier exponential series expansion can be specified using the option FourierParameters.
- With the setting FourierParameters->{a,b}, expr is assumed to have a period of
, and the n
coefficient computed by FourierCoefficient is
Integrate[expr 2 πbnt,{t,-
,
}].
- In addition to the option FourierParameters, FourierCoefficient can also accept the options available to Integrate. These options are passed directly to Integrate.
Tech Notes
Related Guides
Text
Wolfram Research (2008), FourierCoefficient, Wolfram Language function, https://reference.wolfram.com/language/FourierSeries/ref/FourierCoefficient.html.
CMS
Wolfram Language. 2008. "FourierCoefficient." Wolfram Language & System Documentation Center. Wolfram Research. https://reference.wolfram.com/language/FourierSeries/ref/FourierCoefficient.html.
APA
Wolfram Language. (2008). FourierCoefficient. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/FourierSeries/ref/FourierCoefficient.html
BibTeX
@misc{reference.wolfram_2025_fouriercoefficient, author="Wolfram Research", title="{FourierCoefficient}", year="2008", howpublished="\url{https://reference.wolfram.com/language/FourierSeries/ref/FourierCoefficient.html}", note=[Accessed: 10-August-2025]}
BibLaTeX
@online{reference.wolfram_2025_fouriercoefficient, organization={Wolfram Research}, title={FourierCoefficient}, year={2008}, url={https://reference.wolfram.com/language/FourierSeries/ref/FourierCoefficient.html}, note=[Accessed: 10-August-2025]}