HierarchicalClustering`
HierarchicalClustering`
Agglomerate
Agglomerate[{e1,e2,…}]
gives a hierarchical clustering of the elements e1, e2, ….
Agglomerate[{e1->v1,e2->v2,…}]
represents ei with vi in each cluster.
Agglomerate[{e1,e2,…}->{v1,v2,…}]
represents ei with vi in each cluster.
更多信息和选项
- To use Agglomerate, you first need to load the Hierarchical Clustering Package using Needs["HierarchicalClustering`"].
- Agglomerate gives a Cluster object.
- The cluster hierarchy may be viewed using DendrogramPlot.
- The data elements ei can be numbers; numeric lists, matrices, or tensors; lists of Boolean elements; or strings. If the ei are lists, matrices, or tensors, each must have the same dimensions.
- The following options can be given:
-
DistanceFunction Automatic the distance or dissimilarity measure to use Linkage Automatic the clustering linkage algorithm to use - With the default setting DistanceFunction->Automatic, Agglomerate uses SquaredEuclideanDistance for numeric data, JaccardDissimilarity for Boolean data, and EditDistance for string data.
- The setting for DistanceFunction can be any distance or dissimilarity function or a pure function f defining a distance between two values.
- Linkage defines the intercluster dissimilarity, given the dissimilarities between member elements.
- Possible settings for the Linkage option include:
-
"Single" smallest intercluster dissimilarity "Average" average intercluster dissimilarity "Complete" largest intercluster dissimilarity "WeightedAverage" weighted average intercluster dissimilarity "Centroid" distance from cluster centroids "Median" distance from cluster medians "Ward" Ward's minimum variance dissimilarity f a pure function - The function f defines a distance from a cluster k to the new cluster formed by fusing clusters i and j.
- The arguments supplied to f are dik, djk, dij, ni, nj, and nk, where d is the distance between clusters and n is the number of elements in a cluster.
范例
打开所有单元关闭所有单元Options (2)
DistanceFunction (1)
Cluster hierarchy using ManhattanDistance:
Wolfram Research (2007),Agglomerate,Wolfram 语言函数,https://reference.wolfram.com/language/HierarchicalClustering/ref/Agglomerate.html.
文本
Wolfram Research (2007),Agglomerate,Wolfram 语言函数,https://reference.wolfram.com/language/HierarchicalClustering/ref/Agglomerate.html.
CMS
Wolfram 语言. 2007. "Agglomerate." Wolfram 语言与系统参考资料中心. Wolfram Research. https://reference.wolfram.com/language/HierarchicalClustering/ref/Agglomerate.html.
APA
Wolfram 语言. (2007). Agglomerate. Wolfram 语言与系统参考资料中心. 追溯自 https://reference.wolfram.com/language/HierarchicalClustering/ref/Agglomerate.html 年