LinearAlgebra`BLAS`
LinearAlgebra`BLAS`

# DOTC

DOTC[x,y]

computes the dot product of two vectors x and y.

# Details and Options

• To use DOTC, you first need to load the BLAS Package using Needs["LinearAlgebra`BLAS`"].
• The following arguments must be given:
•  x input expression vector y input expression vector
• The vector arguments must be of the same length.

# Examples

open allclose all

## Basic Examples(1)

Compute the dot product of two complex-valued vectors:

## Scope(4)

Real vectors:

Complex vectors:

Arbitrary-precision vectors:

Symbolic vectors:

## Properties & Relations(1)

For vectors x and y, DOTC[x,y] is equivalent to Conjugate[x].y:

## Possible Issues(1)

Arguments must be of the same length:

Wolfram Research (2017), DOTC, Wolfram Language function, https://reference.wolfram.com/language/LowLevelLinearAlgebra/ref/DOTC.html.

#### Text

Wolfram Research (2017), DOTC, Wolfram Language function, https://reference.wolfram.com/language/LowLevelLinearAlgebra/ref/DOTC.html.

#### CMS

Wolfram Language. 2017. "DOTC." Wolfram Language & System Documentation Center. Wolfram Research. https://reference.wolfram.com/language/LowLevelLinearAlgebra/ref/DOTC.html.

#### APA

Wolfram Language. (2017). DOTC. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/LowLevelLinearAlgebra/ref/DOTC.html

#### BibTeX

@misc{reference.wolfram_2024_dotc, author="Wolfram Research", title="{DOTC}", year="2017", howpublished="\url{https://reference.wolfram.com/language/LowLevelLinearAlgebra/ref/DOTC.html}", note=[Accessed: 13-August-2024 ]}

#### BibLaTeX

@online{reference.wolfram_2024_dotc, organization={Wolfram Research}, title={DOTC}, year={2017}, url={https://reference.wolfram.com/language/LowLevelLinearAlgebra/ref/DOTC.html}, note=[Accessed: 13-August-2024 ]}