GEMM
GEMM[tsa,tsb,α,a,b,β,c]
computes the matrix-matrix multiplication α optsa[a].optsb[b]+β c and resets c to the result.
詳細とオプション
- To use GEMM, you first need to load the BLAS Package using Needs["LinearAlgebra`BLAS`"].
- The following arguments must be given:
-
tsa input string transposition string for a tsb input string transposition string for b α input expression scalar mutliple a input expression rectangular matrix b input expression rectangular matrix β input expression scalar multiple c input/output symbol rectangular matrix; the symbol value is modified in place - The transposition strings describing the operators optsa and optsb and may be specified as:
-
"N" no transposition "T" transpose "C" conjugate transpose - Dimensions of the matrix arguments must be such that the dot product and addition are well defined.
例題
すべて開くすべて閉じる例 (1)
Compute Transpose[a].b+2 c and save it in c:
Properties & Relations (3)
GEMM["N","N",α,a,b,β,c] is equivalent to c=α a.b+β c:
GEMM["T","N",α,a,b,β,b] is equivalent to c=α Transpose[a].b+β c:
GEMM["C","T",α,a,b,β,b] is equivalent to c=α ConjugateTranspose[a].Transpose[b]+β c:
テキスト
Wolfram Research (2017), GEMM, Wolfram言語関数, https://reference.wolfram.com/language/LowLevelLinearAlgebra/ref/GEMM.html.
CMS
Wolfram Language. 2017. "GEMM." Wolfram Language & System Documentation Center. Wolfram Research. https://reference.wolfram.com/language/LowLevelLinearAlgebra/ref/GEMM.html.
APA
Wolfram Language. (2017). GEMM. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/LowLevelLinearAlgebra/ref/GEMM.html