MultivariateTDistribution[Σ,m]
represents the multivariate Student distribution with scale matrix Σ and degrees of freedom parameter m.
MultivariateTDistribution[μ,Σ,m]
represents the multivariate Student distribution with location μ, scale matrix Σ, and m degrees of freedom.


MultivariateTDistribution
MultivariateTDistribution[Σ,m]
represents the multivariate Student distribution with scale matrix Σ and degrees of freedom parameter m.
MultivariateTDistribution[μ,Σ,m]
represents the multivariate Student distribution with location μ, scale matrix Σ, and m degrees of freedom.
Details and Options
- To use MultivariateTDistribution, you first need to load the Multivariate Statistics Package using Needs["MultivariateStatistics`"].
- The probability density for vector x in a multivariate t distribution is proportional to (1+(x-μ).Σ-1.(x-μ)/m)-(m+Length[Σ])/2.
- The scale matrix Σ can be any real‐valued symmetric positive definite matrix.
- With specified location μ, μ can be any vector of real numbers, and Σ can be any symmetric positive definite p×p matrix with p=Length[μ].
- The multivariate Student
distribution characterizes the ratio of a multinormal to the covariance between the variates.
- MultivariateTDistribution can be used with such functions as Mean, CDF, and RandomReal.
Examples
open all close allBasic Examples (3)
Tech Notes
Related Guides
Text
Wolfram Research (2007), MultivariateTDistribution, Wolfram Language function, https://reference.wolfram.com/language/MultivariateStatistics/ref/MultivariateTDistribution.html (updated 2008).
CMS
Wolfram Language. 2007. "MultivariateTDistribution." Wolfram Language & System Documentation Center. Wolfram Research. Last Modified 2008. https://reference.wolfram.com/language/MultivariateStatistics/ref/MultivariateTDistribution.html.
APA
Wolfram Language. (2007). MultivariateTDistribution. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/MultivariateStatistics/ref/MultivariateTDistribution.html
BibTeX
@misc{reference.wolfram_2025_multivariatetdistribution, author="Wolfram Research", title="{MultivariateTDistribution}", year="2008", howpublished="\url{https://reference.wolfram.com/language/MultivariateStatistics/ref/MultivariateTDistribution.html}", note=[Accessed: 14-August-2025]}
BibLaTeX
@online{reference.wolfram_2025_multivariatetdistribution, organization={Wolfram Research}, title={MultivariateTDistribution}, year={2008}, url={https://reference.wolfram.com/language/MultivariateStatistics/ref/MultivariateTDistribution.html}, note=[Accessed: 14-August-2025]}