AiryBiZero
AiryBiZero[k]
represents the k zero of the Airy function .
AiryBiZero[k,x0]
represents the k zero less than x0.
Details
- Mathematical function, suitable for both symbolic and numerical manipulation.
- N[AiryBiZero[k]] gives a numerical approximation so long as the specified zero exists.
- AiryBiZero[k] represents the k zero less than 0.
- AiryBiZero can be evaluated to arbitrary numerical precision.
- AiryBiZero automatically threads over lists. »
Examples
open allclose allBasic Examples (4)
AiryBiZero gives the zeros of AiryBi:
Display zeros of the AiryBi function over a subset of the reals:
Series expansion at Infinity:
Scope (11)
Numerical Evaluation (4)
Find the second zero of less than :
Evaluate numerically to high precision:
Evaluate efficiently at high precision:
Compute the elementwise values of an array using automatic threading:
Or compute the matrix AiryBiZero function using MatrixFunction:
Compute average-case statistical intervals using Around:
Specific Values (4)
Find the first zero of AiryBi using Solve:
AiryBiZero threads elementwise over lists:
Visualization (2)
Series Expansion (1)
Asymptotic behavior of AiryBiZero[k] for large k:
Text
Wolfram Research (2007), AiryBiZero, Wolfram Language function, https://reference.wolfram.com/language/ref/AiryBiZero.html.
CMS
Wolfram Language. 2007. "AiryBiZero." Wolfram Language & System Documentation Center. Wolfram Research. https://reference.wolfram.com/language/ref/AiryBiZero.html.
APA
Wolfram Language. (2007). AiryBiZero. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/ref/AiryBiZero.html