AlgebraicNumberPolynomial

AlgebraicNumberPolynomial[a,x]

给出与 AlgebraicNumber 对象 a 相应的关于 x 的多项式.

更多信息

范例

打开所有单元关闭所有单元

基本范例  (1)

范围  (3)

整数和有理数:

AlgebraicNumber 对象:

AlgebraicNumberPolynomial 自动线性作用于列表:

应用  (1)

使用多项式的代数数加法:

进行相同运算的等价方式:

属性和关系  (1)

AlgebraicNumber 定义为一个代数数的多项式函数:

可能存在的问题  (1)

该输入必须是一个 AlgebraicNumber 对象或者是一个有理数:

Wolfram Research (2007),AlgebraicNumberPolynomial,Wolfram 语言函数,https://reference.wolfram.com/language/ref/AlgebraicNumberPolynomial.html.

文本

Wolfram Research (2007),AlgebraicNumberPolynomial,Wolfram 语言函数,https://reference.wolfram.com/language/ref/AlgebraicNumberPolynomial.html.

CMS

Wolfram 语言. 2007. "AlgebraicNumberPolynomial." Wolfram 语言与系统参考资料中心. Wolfram Research. https://reference.wolfram.com/language/ref/AlgebraicNumberPolynomial.html.

APA

Wolfram 语言. (2007). AlgebraicNumberPolynomial. Wolfram 语言与系统参考资料中心. 追溯自 https://reference.wolfram.com/language/ref/AlgebraicNumberPolynomial.html 年

BibTeX

@misc{reference.wolfram_2024_algebraicnumberpolynomial, author="Wolfram Research", title="{AlgebraicNumberPolynomial}", year="2007", howpublished="\url{https://reference.wolfram.com/language/ref/AlgebraicNumberPolynomial.html}", note=[Accessed: 18-November-2024 ]}

BibLaTeX

@online{reference.wolfram_2024_algebraicnumberpolynomial, organization={Wolfram Research}, title={AlgebraicNumberPolynomial}, year={2007}, url={https://reference.wolfram.com/language/ref/AlgebraicNumberPolynomial.html}, note=[Accessed: 18-November-2024 ]}