ClusterDissimilarityFunction

ClusterDissimilarityFunction

ClusteringTreeDendrogram 的一个选项,指定分群内的相异度.

更多信息

  • ClusterDissimilarityFunction 的可能设置是:
  • "Single"最小分群内相异度
    "Average"平均分群内相异度
    "Complete"最大分群内相异度
    "WeightedAverage"加权平均分群内相异度
    "Centroid"与分群中心的距离
    "Median"来自分群中位数的距离
    "Ward"Ward 的最小方差相异度
    纯函数
  • 函数 f 定义任意两个分群之间的距离.
  • 函数 f 必须是 DistanceMatrix 的实值函数.

范例

基本范例  (1)

获取颜色列表的分群层次:

使用不同分群相异度将它与获得的分群比较:

使用 dendrogram 显示相同结果:

Wolfram Research (2016),ClusterDissimilarityFunction,Wolfram 语言函数,https://reference.wolfram.com/language/ref/ClusterDissimilarityFunction.html.

文本

Wolfram Research (2016),ClusterDissimilarityFunction,Wolfram 语言函数,https://reference.wolfram.com/language/ref/ClusterDissimilarityFunction.html.

CMS

Wolfram 语言. 2016. "ClusterDissimilarityFunction." Wolfram 语言与系统参考资料中心. Wolfram Research. https://reference.wolfram.com/language/ref/ClusterDissimilarityFunction.html.

APA

Wolfram 语言. (2016). ClusterDissimilarityFunction. Wolfram 语言与系统参考资料中心. 追溯自 https://reference.wolfram.com/language/ref/ClusterDissimilarityFunction.html 年

BibTeX

@misc{reference.wolfram_2024_clusterdissimilarityfunction, author="Wolfram Research", title="{ClusterDissimilarityFunction}", year="2016", howpublished="\url{https://reference.wolfram.com/language/ref/ClusterDissimilarityFunction.html}", note=[Accessed: 22-November-2024 ]}

BibLaTeX

@online{reference.wolfram_2024_clusterdissimilarityfunction, organization={Wolfram Research}, title={ClusterDissimilarityFunction}, year={2016}, url={https://reference.wolfram.com/language/ref/ClusterDissimilarityFunction.html}, note=[Accessed: 22-November-2024 ]}