ComplexInfinity
✖
ComplexInfinity
詳細

- ComplexInfinityは,DirectedInfinity[]に変換される.
- OutputFormでは,DirectedInfinity[]はComplexInfinityとして出力される.
例題
すべて開くすべて閉じる例 (1)基本的な使用例
スコープ (4)標準的な使用例のスコープの概要
ComplexInfinityを数値関数で使う:

https://wolfram.com/xid/0pus33f3py-f7pesp


https://wolfram.com/xid/0pus33f3py-flnp6v


https://wolfram.com/xid/0pus33f3py-cpv5v

ComplexInfinityは,有限実数,複素数,記号的量を吸収する:

https://wolfram.com/xid/0pus33f3py-dh628z


https://wolfram.com/xid/0pus33f3py-evc96k


https://wolfram.com/xid/0pus33f3py-nwt1l


https://wolfram.com/xid/0pus33f3py-bv2gcg


https://wolfram.com/xid/0pus33f3py-fgbhy4

ComplexInfinityで算術を行う:

https://wolfram.com/xid/0pus33f3py-c7xur



https://wolfram.com/xid/0pus33f3py-cr65v7

ComplexInfinityを級数の展開点として使う:

https://wolfram.com/xid/0pus33f3py-mnd0m


https://wolfram.com/xid/0pus33f3py-fqqn0k

アプリケーション (2)この関数で解くことのできる問題の例

https://wolfram.com/xid/0pus33f3py-lgye00

https://wolfram.com/xid/0pus33f3py-mjq02


https://wolfram.com/xid/0pus33f3py-c4oogv

ComplexInfinityにおけるLogGamma関数の漸近解析:

https://wolfram.com/xid/0pus33f3py-3zlsgg

特性と関係 (6)この関数の特性および他の関数との関係
Quietを使ってメッセージが出ないようにする:

https://wolfram.com/xid/0pus33f3py-fcd9z8


https://wolfram.com/xid/0pus33f3py-ck5khf


ComplexInfinityはSimplifyおよびFullSimplifyで生成することができる:

https://wolfram.com/xid/0pus33f3py-jgt8d2



https://wolfram.com/xid/0pus33f3py-ihqfy7


ComplexInfinityは不定の実部と虚部を持つ:

https://wolfram.com/xid/0pus33f3py-bgyuui


https://wolfram.com/xid/0pus33f3py-b24a61


ComplexInfinityは数ではない:

https://wolfram.com/xid/0pus33f3py-cp77iy

ComplexInfinityを極限から求める:

https://wolfram.com/xid/0pus33f3py-1co9uc

ComplexInfinityは微分における定数の様に振る舞う:

https://wolfram.com/xid/0pus33f3py-drhdbo

考えられる問題 (4)よく起る問題と予期しない動作
ComplexInfinityは数値的量ではない:

https://wolfram.com/xid/0pus33f3py-lltvl1

ComplexInfinityは無限の精度を持った記号である:

https://wolfram.com/xid/0pus33f3py-cf67ta

ComplexInfinityを評価するとDirectedInfinityになる:

https://wolfram.com/xid/0pus33f3py-cb6281

微分方程式の境界条件でComplexInfinityを注意して使う:

https://wolfram.com/xid/0pus33f3py-hrunnz



おもしろい例題 (2)驚くような使用例や興味深い使用例

https://wolfram.com/xid/0pus33f3py-9f5ef8


リーマン(Riemann)球面で示されるComplexInfinityにおける指数関数の振る舞い:

https://wolfram.com/xid/0pus33f3py-6u6k3b

Wolfram Research (1988), ComplexInfinity, Wolfram言語関数, https://reference.wolfram.com/language/ref/ComplexInfinity.html.
テキスト
Wolfram Research (1988), ComplexInfinity, Wolfram言語関数, https://reference.wolfram.com/language/ref/ComplexInfinity.html.
Wolfram Research (1988), ComplexInfinity, Wolfram言語関数, https://reference.wolfram.com/language/ref/ComplexInfinity.html.
CMS
Wolfram Language. 1988. "ComplexInfinity." Wolfram Language & System Documentation Center. Wolfram Research. https://reference.wolfram.com/language/ref/ComplexInfinity.html.
Wolfram Language. 1988. "ComplexInfinity." Wolfram Language & System Documentation Center. Wolfram Research. https://reference.wolfram.com/language/ref/ComplexInfinity.html.
APA
Wolfram Language. (1988). ComplexInfinity. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/ref/ComplexInfinity.html
Wolfram Language. (1988). ComplexInfinity. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/ref/ComplexInfinity.html
BibTeX
@misc{reference.wolfram_2025_complexinfinity, author="Wolfram Research", title="{ComplexInfinity}", year="1988", howpublished="\url{https://reference.wolfram.com/language/ref/ComplexInfinity.html}", note=[Accessed: 08-May-2025
]}
BibLaTeX
@online{reference.wolfram_2025_complexinfinity, organization={Wolfram Research}, title={ComplexInfinity}, year={1988}, url={https://reference.wolfram.com/language/ref/ComplexInfinity.html}, note=[Accessed: 08-May-2025
]}