ScalingMatrix
✖
ScalingMatrix
ScalingMatrix[{sx,sy,…}]
给出沿着坐标轴、相应于因子 si 缩放的矩阵.
ScalingMatrix[s,v]
给出沿着向量 v、相应于因子 s 缩放的矩阵.
范例
打开所有单元关闭所有单元基本范例 (2)常见实例总结
范围 (3)标准用法实例范围调查
In[1]:=1

✖
https://wolfram.com/xid/0b8b797p1u-p877qr
Out[1]=1

In[2]:=2

✖
https://wolfram.com/xid/0b8b797p1u-hng44k
Out[2]=2

In[1]:=1

✖
https://wolfram.com/xid/0b8b797p1u-g7xt0l
In[2]:=2

✖
https://wolfram.com/xid/0b8b797p1u-d84ymm
Out[2]=2

In[1]:=1

✖
https://wolfram.com/xid/0b8b797p1u-gc95ov
In[2]:=2

✖
https://wolfram.com/xid/0b8b797p1u-ewjp9i
Out[2]=2

应用 (4)用该函数可以解决的问题范例
属性和关系 (5)函数的属性及与其他函数的关联
ScalingMatrix[s,v] 的行列式是 s:
In[1]:=1

✖
https://wolfram.com/xid/0b8b797p1u-koxt8y
Out[1]=1

ScalingMatrix[s,v] 的逆是由 ScalingMatrix[1/s,v] 给出:
In[1]:=1

✖
https://wolfram.com/xid/0b8b797p1u-bcxf9n
Out[1]=1

ScalingMatrix[{s1,…,sn}] 的行列式由 s1⋯ sn 给出:
In[1]:=1

✖
https://wolfram.com/xid/0b8b797p1u-mhnwva
Out[1]=1

ScalingMatrix[{s1,…,sn}] 的逆由 ScalingMatrix[{1/s1,…,1/sn}] 给出:
In[1]:=1

✖
https://wolfram.com/xid/0b8b797p1u-bfmpyo
Out[1]=1

形式 ScalingMatrix[{s1,…,sn}] 等价于 DiagonalMatrix[{s1,…,sn}]:
In[1]:=1

✖
https://wolfram.com/xid/0b8b797p1u-tiy2j5
Out[1]=1

Wolfram Research (2007),ScalingMatrix,Wolfram 语言函数,https://reference.wolfram.com/language/ref/ScalingMatrix.html.
✖
Wolfram Research (2007),ScalingMatrix,Wolfram 语言函数,https://reference.wolfram.com/language/ref/ScalingMatrix.html.
文本
Wolfram Research (2007),ScalingMatrix,Wolfram 语言函数,https://reference.wolfram.com/language/ref/ScalingMatrix.html.
✖
Wolfram Research (2007),ScalingMatrix,Wolfram 语言函数,https://reference.wolfram.com/language/ref/ScalingMatrix.html.
CMS
Wolfram 语言. 2007. "ScalingMatrix." Wolfram 语言与系统参考资料中心. Wolfram Research. https://reference.wolfram.com/language/ref/ScalingMatrix.html.
✖
Wolfram 语言. 2007. "ScalingMatrix." Wolfram 语言与系统参考资料中心. Wolfram Research. https://reference.wolfram.com/language/ref/ScalingMatrix.html.
APA
Wolfram 语言. (2007). ScalingMatrix. Wolfram 语言与系统参考资料中心. 追溯自 https://reference.wolfram.com/language/ref/ScalingMatrix.html 年
✖
Wolfram 语言. (2007). ScalingMatrix. Wolfram 语言与系统参考资料中心. 追溯自 https://reference.wolfram.com/language/ref/ScalingMatrix.html 年
BibTeX
✖
@misc{reference.wolfram_2025_scalingmatrix, author="Wolfram Research", title="{ScalingMatrix}", year="2007", howpublished="\url{https://reference.wolfram.com/language/ref/ScalingMatrix.html}", note=[Accessed: 04-April-2025
]}
BibLaTeX
✖
@online{reference.wolfram_2025_scalingmatrix, organization={Wolfram Research}, title={ScalingMatrix}, year={2007}, url={https://reference.wolfram.com/language/ref/ScalingMatrix.html}, note=[Accessed: 04-April-2025
]}