SpheroidalJoiningFactor

SpheroidalJoiningFactor[n,m,γ]

给出 nm 次球面连接因子.

更多信息

范例

打开所有单元关闭所有单元

基本范例  (2)

数值运算:

在实数的子集上绘图:

范围  (9)

数值计算  (4)

数值计算:

高精度计算:

输出的精度与输入的精度一致:

复数输入:

高精度条件下进行高效计算:

特殊值  (3)

零处的值:

求满足 SpheroidalJoiningFactor[0,1/2,x]=5x 值:

SpheroidalJoiningFactor 逐项作用于列表的各个元素:

可视化  (2)

绘制 SpheroidalJoiningFactor 函数:

绘制 SpheroidalJoiningFactor[2,1,x+i y] 的实部:

绘制 SpheroidalJoiningFactor[2,1,x+i y] 的虚部:

应用  (1)

径向函数和角球体函数之间的关系:

代入数值进行检查:

可能存在的问题  (1)

n 取半整数和 m 取一般值情况下,球体函数不进行计算:

Wolfram Research (2007),SpheroidalJoiningFactor,Wolfram 语言函数,https://reference.wolfram.com/language/ref/SpheroidalJoiningFactor.html.

文本

Wolfram Research (2007),SpheroidalJoiningFactor,Wolfram 语言函数,https://reference.wolfram.com/language/ref/SpheroidalJoiningFactor.html.

CMS

Wolfram 语言. 2007. "SpheroidalJoiningFactor." Wolfram 语言与系统参考资料中心. Wolfram Research. https://reference.wolfram.com/language/ref/SpheroidalJoiningFactor.html.

APA

Wolfram 语言. (2007). SpheroidalJoiningFactor. Wolfram 语言与系统参考资料中心. 追溯自 https://reference.wolfram.com/language/ref/SpheroidalJoiningFactor.html 年

BibTeX

@misc{reference.wolfram_2024_spheroidaljoiningfactor, author="Wolfram Research", title="{SpheroidalJoiningFactor}", year="2007", howpublished="\url{https://reference.wolfram.com/language/ref/SpheroidalJoiningFactor.html}", note=[Accessed: 18-November-2024 ]}

BibLaTeX

@online{reference.wolfram_2024_spheroidaljoiningfactor, organization={Wolfram Research}, title={SpheroidalJoiningFactor}, year={2007}, url={https://reference.wolfram.com/language/ref/SpheroidalJoiningFactor.html}, note=[Accessed: 18-November-2024 ]}