WeaklyConnectedGraphQ
✖
WeaklyConnectedGraphQ
詳細

- WeaklyConnectedGraphQは任意のグラフオブジェクトに使うことができる.
- グラフは,すべての頂点ペアを繋ぐ連続する辺がある場合,弱連結グラフである.
- グラフが無向であるとみなされるときに,すべての頂点ペアを連結する一連の辺がある場合,このグラフは弱連結である.

例題
すべて開くすべて閉じる例 (2)基本的な使用例
スコープ (6)標準的な使用例のスコープの概要
In[2]:=2

✖
https://wolfram.com/xid/0g38x65i9p0wa7dxf-8zzfce
Out[2]=2

In[1]:=1

✖
https://wolfram.com/xid/0g38x65i9p0wa7dxf-xkbvj
Out[1]=1

In[1]:=1

✖
https://wolfram.com/xid/0g38x65i9p0wa7dxf-yyp8c5
Out[1]=1

In[1]:=1

✖
https://wolfram.com/xid/0g38x65i9p0wa7dxf-xb9nxo
Out[1]=1

WeaklyConnectedGraphQは,弱連結ではない任意のグラフについてFalseを与える:
In[1]:=1

✖
https://wolfram.com/xid/0g38x65i9p0wa7dxf-3l2bwe
Out[1]=1

WeaklyConnectedGraphQは,大きいグラフに使うことができる:
In[1]:=1

✖
https://wolfram.com/xid/0g38x65i9p0wa7dxf-pq9ae
In[2]:=2

✖
https://wolfram.com/xid/0g38x65i9p0wa7dxf-cevvx1
Out[2]=2

特性と関係 (3)この関数の特性および他の関数との関係
In[1]:=1

✖
https://wolfram.com/xid/0g38x65i9p0wa7dxf-edtvky
Out[1]=1

In[2]:=2

✖
https://wolfram.com/xid/0g38x65i9p0wa7dxf-f2y3hj
Out[2]=2

In[1]:=1

✖
https://wolfram.com/xid/0g38x65i9p0wa7dxf-chaumv
Out[1]=1

In[2]:=2

✖
https://wolfram.com/xid/0g38x65i9p0wa7dxf-t11qf
Out[2]=2

In[1]:=1

✖
https://wolfram.com/xid/0g38x65i9p0wa7dxf-bge9sr
Out[1]=1

In[2]:=2

✖
https://wolfram.com/xid/0g38x65i9p0wa7dxf-bdmabn
Out[2]=2

In[3]:=3

✖
https://wolfram.com/xid/0g38x65i9p0wa7dxf-igkijm
Out[3]=3

In[4]:=4

✖
https://wolfram.com/xid/0g38x65i9p0wa7dxf-iqoccl
Out[4]=4

In[5]:=5

✖
https://wolfram.com/xid/0g38x65i9p0wa7dxf-hycp5h
Out[5]=5

In[6]:=6

✖
https://wolfram.com/xid/0g38x65i9p0wa7dxf-csa43m
Out[6]=6

Wolfram Research (2012), WeaklyConnectedGraphQ, Wolfram言語関数, https://reference.wolfram.com/language/ref/WeaklyConnectedGraphQ.html.
✖
Wolfram Research (2012), WeaklyConnectedGraphQ, Wolfram言語関数, https://reference.wolfram.com/language/ref/WeaklyConnectedGraphQ.html.
テキスト
Wolfram Research (2012), WeaklyConnectedGraphQ, Wolfram言語関数, https://reference.wolfram.com/language/ref/WeaklyConnectedGraphQ.html.
✖
Wolfram Research (2012), WeaklyConnectedGraphQ, Wolfram言語関数, https://reference.wolfram.com/language/ref/WeaklyConnectedGraphQ.html.
CMS
Wolfram Language. 2012. "WeaklyConnectedGraphQ." Wolfram Language & System Documentation Center. Wolfram Research. https://reference.wolfram.com/language/ref/WeaklyConnectedGraphQ.html.
✖
Wolfram Language. 2012. "WeaklyConnectedGraphQ." Wolfram Language & System Documentation Center. Wolfram Research. https://reference.wolfram.com/language/ref/WeaklyConnectedGraphQ.html.
APA
Wolfram Language. (2012). WeaklyConnectedGraphQ. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/ref/WeaklyConnectedGraphQ.html
✖
Wolfram Language. (2012). WeaklyConnectedGraphQ. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/ref/WeaklyConnectedGraphQ.html
BibTeX
✖
@misc{reference.wolfram_2025_weaklyconnectedgraphq, author="Wolfram Research", title="{WeaklyConnectedGraphQ}", year="2012", howpublished="\url{https://reference.wolfram.com/language/ref/WeaklyConnectedGraphQ.html}", note=[Accessed: 15-May-2025
]}
BibLaTeX
✖
@online{reference.wolfram_2025_weaklyconnectedgraphq, organization={Wolfram Research}, title={WeaklyConnectedGraphQ}, year={2012}, url={https://reference.wolfram.com/language/ref/WeaklyConnectedGraphQ.html}, note=[Accessed: 15-May-2025
]}