AcyclicQ[g]
yields True if graph g is acyclic.


AcyclicQ
AcyclicQ[g]
yields True if graph g is acyclic.
Details and Options
- AcyclicQ functionality is now available in the built-in Wolfram Language function AcyclicGraphQ.
- To use AcyclicQ, you first need to load the Combinatorica Package using Needs["Combinatorica`"].
Examples
Basic Examples (2)
AcyclicQ has been superseded by AcyclicGraphQ:
See Also
Tech Notes
Related Guides
-
▪
- Cycles and Connectivity ▪
- Graph Properties ▪
- Graphs & Networks ▪
- Graph Visualization ▪
- Computation on Graphs ▪
- Graph Construction & Representation ▪
- Graphs and Matrices ▪
- Graph Properties & Measurements ▪
- Graph Operations and Modifications ▪
- Statistical Analysis ▪
- Social Network Analysis ▪
- Graph Properties ▪
- Mathematical Data Formats ▪
- Discrete Mathematics
Text
Wolfram Research (2012), AcyclicQ, Wolfram Language function, https://reference.wolfram.com/language/Combinatorica/ref/AcyclicQ.html.
CMS
Wolfram Language. 2012. "AcyclicQ." Wolfram Language & System Documentation Center. Wolfram Research. https://reference.wolfram.com/language/Combinatorica/ref/AcyclicQ.html.
APA
Wolfram Language. (2012). AcyclicQ. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/Combinatorica/ref/AcyclicQ.html
BibTeX
@misc{reference.wolfram_2025_acyclicq, author="Wolfram Research", title="{AcyclicQ}", year="2012", howpublished="\url{https://reference.wolfram.com/language/Combinatorica/ref/AcyclicQ.html}", note=[Accessed: 14-August-2025]}
BibLaTeX
@online{reference.wolfram_2025_acyclicq, organization={Wolfram Research}, title={AcyclicQ}, year={2012}, url={https://reference.wolfram.com/language/Combinatorica/ref/AcyclicQ.html}, note=[Accessed: 14-August-2025]}