BipartiteMatching[g]
gives the list of edges associated with a maximum matching in bipartite graph g. If the graph is edge weighted, then the function returns a matching with maximum total weight.


BipartiteMatching
BipartiteMatching[g]
gives the list of edges associated with a maximum matching in bipartite graph g. If the graph is edge weighted, then the function returns a matching with maximum total weight.
Details and Options
- BipartiteMatching functionality is now available in the built-in Wolfram Language function FindIndependentEdgeSet.
- To use BipartiteMatching, you first need to load the Combinatorica Package using Needs["Combinatorica`"].
Examples
Basic Examples (2)
BipartiteMatching has been superseded by FindIndependentEdgeSet:
Tech Notes
Related Guides
-
▪
- Graph Algorithms ▪
- Graphs & Networks ▪
- Graph Visualization ▪
- Computation on Graphs ▪
- Graph Construction & Representation ▪
- Graphs and Matrices ▪
- Graph Properties & Measurements ▪
- Graph Operations and Modifications ▪
- Statistical Analysis ▪
- Social Network Analysis ▪
- Graph Properties ▪
- Mathematical Data Formats ▪
- Discrete Mathematics
Text
Wolfram Research (2012), BipartiteMatching, Wolfram Language function, https://reference.wolfram.com/language/Combinatorica/ref/BipartiteMatching.html.
CMS
Wolfram Language. 2012. "BipartiteMatching." Wolfram Language & System Documentation Center. Wolfram Research. https://reference.wolfram.com/language/Combinatorica/ref/BipartiteMatching.html.
APA
Wolfram Language. (2012). BipartiteMatching. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/Combinatorica/ref/BipartiteMatching.html
BibTeX
@misc{reference.wolfram_2025_bipartitematching, author="Wolfram Research", title="{BipartiteMatching}", year="2012", howpublished="\url{https://reference.wolfram.com/language/Combinatorica/ref/BipartiteMatching.html}", note=[Accessed: 14-August-2025]}
BibLaTeX
@online{reference.wolfram_2025_bipartitematching, organization={Wolfram Research}, title={BipartiteMatching}, year={2012}, url={https://reference.wolfram.com/language/Combinatorica/ref/BipartiteMatching.html}, note=[Accessed: 14-August-2025]}