Diameter[g]
gives the diameter of graph g: the maximum length, among all pairs of vertices in g, of a shortest path between each pair.


Diameter
Diameter[g]
gives the diameter of graph g: the maximum length, among all pairs of vertices in g, of a shortest path between each pair.
Details and Options
- Diameter functionality is now available in the built-in Wolfram Language function GraphDiameter.
- To use Diameter, you first need to load the Combinatorica Package using Needs["Combinatorica`"].
See Also
Tech Notes
Related Guides
-
▪
- Graph Algorithms ▪
- Graphs & Networks ▪
- Graph Visualization ▪
- Computation on Graphs ▪
- Graph Construction & Representation ▪
- Graphs and Matrices ▪
- Graph Properties & Measurements ▪
- Graph Operations and Modifications ▪
- Statistical Analysis ▪
- Social Network Analysis ▪
- Graph Properties ▪
- Mathematical Data Formats ▪
- Discrete Mathematics
Text
Wolfram Research (2012), Diameter, Wolfram Language function, https://reference.wolfram.com/language/Combinatorica/ref/Diameter.html.
CMS
Wolfram Language. 2012. "Diameter." Wolfram Language & System Documentation Center. Wolfram Research. https://reference.wolfram.com/language/Combinatorica/ref/Diameter.html.
APA
Wolfram Language. (2012). Diameter. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/Combinatorica/ref/Diameter.html
BibTeX
@misc{reference.wolfram_2025_diameter, author="Wolfram Research", title="{Diameter}", year="2012", howpublished="\url{https://reference.wolfram.com/language/Combinatorica/ref/Diameter.html}", note=[Accessed: 14-August-2025]}
BibLaTeX
@online{reference.wolfram_2025_diameter, organization={Wolfram Research}, title={Diameter}, year={2012}, url={https://reference.wolfram.com/language/Combinatorica/ref/Diameter.html}, note=[Accessed: 14-August-2025]}