GeneralizedPetersenGraph[n,k]
returns the generalized Petersen graph, for integers and
, which is the graph with vertices
and
and edges
, and {ui,vi}. The Petersen graph is identical to the generalized Petersen graph with
and
.


GeneralizedPetersenGraph
GeneralizedPetersenGraph[n,k]
returns the generalized Petersen graph, for integers and
, which is the graph with vertices
and
and edges
, and {ui,vi}. The Petersen graph is identical to the generalized Petersen graph with
and
.
Details and Options
- GeneralizedPetersenGraph functionality is now available in the built-in Wolfram Language function PetersenGraph.
- To use GeneralizedPetersenGraph, you first need to load the Combinatorica Package using Needs["Combinatorica`"].
See Also
Tech Notes
Related Guides
-
▪
- Built-in Graphs ▪
- Graphs & Networks ▪
- Graph Visualization ▪
- Computation on Graphs ▪
- Graph Construction & Representation ▪
- Graphs and Matrices ▪
- Graph Properties & Measurements ▪
- Graph Operations and Modifications ▪
- Statistical Analysis ▪
- Social Network Analysis ▪
- Graph Properties ▪
- Mathematical Data Formats ▪
- Discrete Mathematics
Text
Wolfram Research (2012), GeneralizedPetersenGraph, Wolfram Language function, https://reference.wolfram.com/language/Combinatorica/ref/GeneralizedPetersenGraph.html.
CMS
Wolfram Language. 2012. "GeneralizedPetersenGraph." Wolfram Language & System Documentation Center. Wolfram Research. https://reference.wolfram.com/language/Combinatorica/ref/GeneralizedPetersenGraph.html.
APA
Wolfram Language. (2012). GeneralizedPetersenGraph. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/Combinatorica/ref/GeneralizedPetersenGraph.html
BibTeX
@misc{reference.wolfram_2025_generalizedpetersengraph, author="Wolfram Research", title="{GeneralizedPetersenGraph}", year="2012", howpublished="\url{https://reference.wolfram.com/language/Combinatorica/ref/GeneralizedPetersenGraph.html}", note=[Accessed: 14-August-2025]}
BibLaTeX
@online{reference.wolfram_2025_generalizedpetersengraph, organization={Wolfram Research}, title={GeneralizedPetersenGraph}, year={2012}, url={https://reference.wolfram.com/language/Combinatorica/ref/GeneralizedPetersenGraph.html}, note=[Accessed: 14-August-2025]}