UnitransitiveGraph
returns a 20-vertex, 3-unitransitive graph, discovered by Coxeter, that is not isomorphic to a 4-cage or a 5-cage.


UnitransitiveGraph
UnitransitiveGraph
returns a 20-vertex, 3-unitransitive graph, discovered by Coxeter, that is not isomorphic to a 4-cage or a 5-cage.
Details and Options
- UnitransitiveGraph functionality is now available in the built-in Wolfram Language function GraphData.
- To use UnitransitiveGraph, you first need to load the Combinatorica Package using Needs["Combinatorica`"].
See Also
Tech Notes
Related Guides
-
▪
- Built-in Graphs ▪
- Graphs & Networks ▪
- Graph Visualization ▪
- Computation on Graphs ▪
- Graph Construction & Representation ▪
- Graphs and Matrices ▪
- Graph Properties & Measurements ▪
- Graph Operations and Modifications ▪
- Statistical Analysis ▪
- Social Network Analysis ▪
- Graph Properties ▪
- Mathematical Data Formats ▪
- Discrete Mathematics
Text
Wolfram Research (2012), UnitransitiveGraph, Wolfram Language function, https://reference.wolfram.com/language/Combinatorica/ref/UnitransitiveGraph.html.
CMS
Wolfram Language. 2012. "UnitransitiveGraph." Wolfram Language & System Documentation Center. Wolfram Research. https://reference.wolfram.com/language/Combinatorica/ref/UnitransitiveGraph.html.
APA
Wolfram Language. (2012). UnitransitiveGraph. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/Combinatorica/ref/UnitransitiveGraph.html
BibTeX
@misc{reference.wolfram_2025_unitransitivegraph, author="Wolfram Research", title="{UnitransitiveGraph}", year="2012", howpublished="\url{https://reference.wolfram.com/language/Combinatorica/ref/UnitransitiveGraph.html}", note=[Accessed: 14-August-2025]}
BibLaTeX
@online{reference.wolfram_2025_unitransitivegraph, organization={Wolfram Research}, title={UnitransitiveGraph}, year={2012}, url={https://reference.wolfram.com/language/Combinatorica/ref/UnitransitiveGraph.html}, note=[Accessed: 14-August-2025]}