FRatioPValue[x,n,m]
gives the cumulative probability beyond x for the F-ratio distribution with n and m degrees of freedom.


FRatioPValue
FRatioPValue[x,n,m]
gives the cumulative probability beyond x for the F-ratio distribution with n and m degrees of freedom.
Details and Options
- To use FRatioPValue, you first need to load the Hypothesis Testing Package using Needs["HypothesisTesting`"].
- The one-sided
‐value is CDF[FRatioDistribution[n,m],x] if x is less than the median of the F‐ratio distribution with n and m degrees of freedom, and 1-CDF[FRatioDistribution[n,m],x] otherwise.
- The two-sided
‐value is twice the one-sided
‐value.
- The following option can be given:
-
TwoSided False whether to perform a two-sided test
See Also
Tech Notes
Related Guides
Text
Wolfram Research (2007), FRatioPValue, Wolfram Language function, https://reference.wolfram.com/language/HypothesisTesting/ref/FRatioPValue.html.
CMS
Wolfram Language. 2007. "FRatioPValue." Wolfram Language & System Documentation Center. Wolfram Research. https://reference.wolfram.com/language/HypothesisTesting/ref/FRatioPValue.html.
APA
Wolfram Language. (2007). FRatioPValue. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/HypothesisTesting/ref/FRatioPValue.html
BibTeX
@misc{reference.wolfram_2025_fratiopvalue, author="Wolfram Research", title="{FRatioPValue}", year="2007", howpublished="\url{https://reference.wolfram.com/language/HypothesisTesting/ref/FRatioPValue.html}", note=[Accessed: 13-August-2025]}
BibLaTeX
@online{reference.wolfram_2025_fratiopvalue, organization={Wolfram Research}, title={FRatioPValue}, year={2007}, url={https://reference.wolfram.com/language/HypothesisTesting/ref/FRatioPValue.html}, note=[Accessed: 13-August-2025]}