ThreeJSymbol[{j1,m1},{j2,m2},{j3,m3}]
gives the values of the Wigner 3‐ symbol.


ThreeJSymbol
ThreeJSymbol[{j1,m1},{j2,m2},{j3,m3}]
gives the values of the Wigner 3‐ symbol.
Details

- The 3‐
symbols vanish except when
and the
satisfy a triangle inequality.
- The parameters of ThreeJSymbol can be integers, half‐integers or symbolic expressions.
- The 3‐
symbols and Clebsch–Gordan coefficients in the Wolfram Language satisfy the relation
.
Examples
open all close allBasic Examples (2)
Scope (2)
Applications (3)
Properties & Relations (4)
Evaluate the completely symbolic case of ThreeJSymbol:
Demonstrate ‐sum orthogonality:
Convert a 3‐ symbol to a Regge R symbol:
Tech Notes
Related Guides
Related Links
History
Introduced in 1991 (2.0)
Text
Wolfram Research (1991), ThreeJSymbol, Wolfram Language function, https://reference.wolfram.com/language/ref/ThreeJSymbol.html.
CMS
Wolfram Language. 1991. "ThreeJSymbol." Wolfram Language & System Documentation Center. Wolfram Research. https://reference.wolfram.com/language/ref/ThreeJSymbol.html.
APA
Wolfram Language. (1991). ThreeJSymbol. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/ref/ThreeJSymbol.html
BibTeX
@misc{reference.wolfram_2025_threejsymbol, author="Wolfram Research", title="{ThreeJSymbol}", year="1991", howpublished="\url{https://reference.wolfram.com/language/ref/ThreeJSymbol.html}", note=[Accessed: 13-August-2025]}
BibLaTeX
@online{reference.wolfram_2025_threejsymbol, organization={Wolfram Research}, title={ThreeJSymbol}, year={1991}, url={https://reference.wolfram.com/language/ref/ThreeJSymbol.html}, note=[Accessed: 13-August-2025]}