BiconnectedQ[g]
yields True if graph g is biconnected. If g is directed, the underlying undirected graph is used.


BiconnectedQ
BiconnectedQ[g]
yields True if graph g is biconnected. If g is directed, the underlying undirected graph is used.
Details and Options
- BiconnectedQ functionality is now available in the built-in Wolfram Language function KVertexConnectedGraphQ.
- To use BiconnectedQ, you first need to load the Combinatorica Package using Needs["Combinatorica`"].
Examples
Basic Examples (2)
BiconnectedQ has been superseded by KVertexConnectedGraphQ:
Tech Notes
Related Guides
-
▪
- Cycles and Connectivity ▪
- Graphs & Networks ▪
- Graph Visualization ▪
- Computation on Graphs ▪
- Graph Construction & Representation ▪
- Graphs and Matrices ▪
- Graph Properties & Measurements ▪
- Graph Operations and Modifications ▪
- Statistical Analysis ▪
- Social Network Analysis ▪
- Graph Properties ▪
- Mathematical Data Formats ▪
- Discrete Mathematics
Text
Wolfram Research (2012), BiconnectedQ, Wolfram Language function, https://reference.wolfram.com/language/Combinatorica/ref/BiconnectedQ.html.
CMS
Wolfram Language. 2012. "BiconnectedQ." Wolfram Language & System Documentation Center. Wolfram Research. https://reference.wolfram.com/language/Combinatorica/ref/BiconnectedQ.html.
APA
Wolfram Language. (2012). BiconnectedQ. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/Combinatorica/ref/BiconnectedQ.html
BibTeX
@misc{reference.wolfram_2025_biconnectedq, author="Wolfram Research", title="{BiconnectedQ}", year="2012", howpublished="\url{https://reference.wolfram.com/language/Combinatorica/ref/BiconnectedQ.html}", note=[Accessed: 13-August-2025]}
BibLaTeX
@online{reference.wolfram_2025_biconnectedq, organization={Wolfram Research}, title={BiconnectedQ}, year={2012}, url={https://reference.wolfram.com/language/Combinatorica/ref/BiconnectedQ.html}, note=[Accessed: 13-August-2025]}