BipartiteMatchingAndCover[g]
takes a bipartite graph g and returns a matching with maximum weight along with the dual vertex cover. If the graph is not weighted, it is assumed that all edge weights are 1.


BipartiteMatchingAndCover
BipartiteMatchingAndCover[g]
takes a bipartite graph g and returns a matching with maximum weight along with the dual vertex cover. If the graph is not weighted, it is assumed that all edge weights are 1.
更多信息和选项
- BipartiteMatchingAndCover functionality is now available in the built-in Wolfram Language function FindIndependentEdgeSet.
- To use BipartiteMatchingAndCover, you first need to load the Combinatorica Package using Needs["Combinatorica`"].
范例
基本范例 (2)
BipartiteMatchingAndCover has been superseded by FindIndependentEdgeSet:
相关指南
-
▪
- Graph Algorithms ▪
- Graphs & Networks ▪
- Graph Visualization ▪
- Computation on Graphs ▪
- Graph Construction & Representation ▪
- Graphs and Matrices ▪
- Graph Properties & Measurements ▪
- Graph Operations and Modifications ▪
- Statistical Analysis ▪
- Social Network Analysis ▪
- Graph Properties ▪
- Mathematical Data Formats ▪
- Discrete Mathematics
文本
Wolfram Research (2012),BipartiteMatchingAndCover,Wolfram 语言函数,https://reference.wolfram.com/language/Combinatorica/ref/BipartiteMatchingAndCover.html.
CMS
Wolfram 语言. 2012. "BipartiteMatchingAndCover." Wolfram 语言与系统参考资料中心. Wolfram Research. https://reference.wolfram.com/language/Combinatorica/ref/BipartiteMatchingAndCover.html.
APA
Wolfram 语言. (2012). BipartiteMatchingAndCover. Wolfram 语言与系统参考资料中心. 追溯自 https://reference.wolfram.com/language/Combinatorica/ref/BipartiteMatchingAndCover.html 年
BibTeX
@misc{reference.wolfram_2025_bipartitematchingandcover, author="Wolfram Research", title="{BipartiteMatchingAndCover}", year="2012", howpublished="\url{https://reference.wolfram.com/language/Combinatorica/ref/BipartiteMatchingAndCover.html}", note=[Accessed: 15-September-2025]}
BibLaTeX
@online{reference.wolfram_2025_bipartitematchingandcover, organization={Wolfram Research}, title={BipartiteMatchingAndCover}, year={2012}, url={https://reference.wolfram.com/language/Combinatorica/ref/BipartiteMatchingAndCover.html}, note=[Accessed: 15-September-2025]}