Combinatorica`
Combinatorica`

CirculantGraph

As of Version 10, most of the functionality of the Combinatorica package is built into the Wolfram System. »

CirculantGraph[n,l]

constructs a circulant graph on n vertices, meaning the ^(th) vertex is adjacent to the ^(th) and ^(th) vertices, for each in list l.

CirculantGraph[n,l]

returns the graph with n vertices in which each is adjacent to and , where l must be an integer.

更多信息和选项

范例

基本范例  (1)

Wolfram Research (2012),CirculantGraph,Wolfram 语言函数,https://reference.wolfram.com/language/Combinatorica/ref/CirculantGraph.html.

文本

Wolfram Research (2012),CirculantGraph,Wolfram 语言函数,https://reference.wolfram.com/language/Combinatorica/ref/CirculantGraph.html.

CMS

Wolfram 语言. 2012. "CirculantGraph." Wolfram 语言与系统参考资料中心. Wolfram Research. https://reference.wolfram.com/language/Combinatorica/ref/CirculantGraph.html.

APA

Wolfram 语言. (2012). CirculantGraph. Wolfram 语言与系统参考资料中心. 追溯自 https://reference.wolfram.com/language/Combinatorica/ref/CirculantGraph.html 年

BibTeX

@misc{reference.wolfram_2024_circulantgraph, author="Wolfram Research", title="{CirculantGraph}", year="2012", howpublished="\url{https://reference.wolfram.com/language/Combinatorica/ref/CirculantGraph.html}", note=[Accessed: 18-November-2024 ]}

BibLaTeX

@online{reference.wolfram_2024_circulantgraph, organization={Wolfram Research}, title={CirculantGraph}, year={2012}, url={https://reference.wolfram.com/language/Combinatorica/ref/CirculantGraph.html}, note=[Accessed: 18-November-2024 ]}