Combinatorica`
Combinatorica`

DominatingIntegerPartitionQ

As of Version 10, most of the functionality of the Combinatorica package is built into the Wolfram System. »

DominatingIntegerPartitionQ[a,b]

yields True if integer partition a dominates integer partition b, that is, the sum of a size- prefix of a is no smaller than the sum of a size- prefix of b for every .

Details and Options

Wolfram Research (2012), DominatingIntegerPartitionQ, Wolfram Language function, https://reference.wolfram.com/language/Combinatorica/ref/DominatingIntegerPartitionQ.html.

Text

Wolfram Research (2012), DominatingIntegerPartitionQ, Wolfram Language function, https://reference.wolfram.com/language/Combinatorica/ref/DominatingIntegerPartitionQ.html.

CMS

Wolfram Language. 2012. "DominatingIntegerPartitionQ." Wolfram Language & System Documentation Center. Wolfram Research. https://reference.wolfram.com/language/Combinatorica/ref/DominatingIntegerPartitionQ.html.

APA

Wolfram Language. (2012). DominatingIntegerPartitionQ. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/Combinatorica/ref/DominatingIntegerPartitionQ.html

BibTeX

@misc{reference.wolfram_2024_dominatingintegerpartitionq, author="Wolfram Research", title="{DominatingIntegerPartitionQ}", year="2012", howpublished="\url{https://reference.wolfram.com/language/Combinatorica/ref/DominatingIntegerPartitionQ.html}", note=[Accessed: 22-December-2024 ]}

BibLaTeX

@online{reference.wolfram_2024_dominatingintegerpartitionq, organization={Wolfram Research}, title={DominatingIntegerPartitionQ}, year={2012}, url={https://reference.wolfram.com/language/Combinatorica/ref/DominatingIntegerPartitionQ.html}, note=[Accessed: 22-December-2024 ]}