Combinatorica`
Combinatorica`

GeneralizedPetersenGraph

As of Version 10, most of the functionality of the Combinatorica package is built into the Wolfram System. »

GeneralizedPetersenGraph[n,k]

returns the generalized Petersen graph, for integers and , which is the graph with vertices {u_(1),u_(2),...,u_(n)} and {v_(1),v_(2),...,v_(n)} and edges {u_(i),u_(i+1)},{v_(i),v_(i+k)}, and {ui,vi}. The Petersen graph is identical to the generalized Petersen graph with and .

更多信息和选项

Wolfram Research (2012),GeneralizedPetersenGraph,Wolfram 语言函数,https://reference.wolfram.com/language/Combinatorica/ref/GeneralizedPetersenGraph.html.

文本

Wolfram Research (2012),GeneralizedPetersenGraph,Wolfram 语言函数,https://reference.wolfram.com/language/Combinatorica/ref/GeneralizedPetersenGraph.html.

CMS

Wolfram 语言. 2012. "GeneralizedPetersenGraph." Wolfram 语言与系统参考资料中心. Wolfram Research. https://reference.wolfram.com/language/Combinatorica/ref/GeneralizedPetersenGraph.html.

APA

Wolfram 语言. (2012). GeneralizedPetersenGraph. Wolfram 语言与系统参考资料中心. 追溯自 https://reference.wolfram.com/language/Combinatorica/ref/GeneralizedPetersenGraph.html 年

BibTeX

@misc{reference.wolfram_2024_generalizedpetersengraph, author="Wolfram Research", title="{GeneralizedPetersenGraph}", year="2012", howpublished="\url{https://reference.wolfram.com/language/Combinatorica/ref/GeneralizedPetersenGraph.html}", note=[Accessed: 18-November-2024 ]}

BibLaTeX

@online{reference.wolfram_2024_generalizedpetersengraph, organization={Wolfram Research}, title={GeneralizedPetersenGraph}, year={2012}, url={https://reference.wolfram.com/language/Combinatorica/ref/GeneralizedPetersenGraph.html}, note=[Accessed: 18-November-2024 ]}