Combinatorica`
Combinatorica`

MaximumClique

As of Version 10, most of the functionality of the Combinatorica package is built into the Wolfram System. »

MaximumClique[g]

finds a largest clique in graph g.

MaximumClique[g,k]

returns a k-clique, if such a thing exists in g; otherwise it returns {}.

更多信息和选项

Wolfram Research (2012),MaximumClique,Wolfram 语言函数,https://reference.wolfram.com/language/Combinatorica/ref/MaximumClique.html.

文本

Wolfram Research (2012),MaximumClique,Wolfram 语言函数,https://reference.wolfram.com/language/Combinatorica/ref/MaximumClique.html.

CMS

Wolfram 语言. 2012. "MaximumClique." Wolfram 语言与系统参考资料中心. Wolfram Research. https://reference.wolfram.com/language/Combinatorica/ref/MaximumClique.html.

APA

Wolfram 语言. (2012). MaximumClique. Wolfram 语言与系统参考资料中心. 追溯自 https://reference.wolfram.com/language/Combinatorica/ref/MaximumClique.html 年

BibTeX

@misc{reference.wolfram_2024_maximumclique, author="Wolfram Research", title="{MaximumClique}", year="2012", howpublished="\url{https://reference.wolfram.com/language/Combinatorica/ref/MaximumClique.html}", note=[Accessed: 18-November-2024 ]}

BibLaTeX

@online{reference.wolfram_2024_maximumclique, organization={Wolfram Research}, title={MaximumClique}, year={2012}, url={https://reference.wolfram.com/language/Combinatorica/ref/MaximumClique.html}, note=[Accessed: 18-November-2024 ]}