MinimumVertexColoring[g]
returns a minimum vertex coloring of g.
MinimumVertexColoring[g,k]
returns a k-coloring of g, if one exists.


MinimumVertexColoring
MinimumVertexColoring[g]
returns a minimum vertex coloring of g.
MinimumVertexColoring[g,k]
returns a k-coloring of g, if one exists.
Details and Options
- To use MinimumVertexColoring, you first need to load the Combinatorica Package using Needs["Combinatorica`"].
See Also
Tech Notes
Related Guides
-
▪
- Graph Properties ▪
- Graphs & Networks ▪
- Graph Visualization ▪
- Computation on Graphs ▪
- Graph Construction & Representation ▪
- Graphs and Matrices ▪
- Graph Properties & Measurements ▪
- Graph Operations and Modifications ▪
- Statistical Analysis ▪
- Social Network Analysis ▪
- Graph Properties ▪
- Mathematical Data Formats ▪
- Discrete Mathematics
Text
Wolfram Research (2012), MinimumVertexColoring, Wolfram Language function, https://reference.wolfram.com/language/Combinatorica/ref/MinimumVertexColoring.html.
CMS
Wolfram Language. 2012. "MinimumVertexColoring." Wolfram Language & System Documentation Center. Wolfram Research. https://reference.wolfram.com/language/Combinatorica/ref/MinimumVertexColoring.html.
APA
Wolfram Language. (2012). MinimumVertexColoring. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/Combinatorica/ref/MinimumVertexColoring.html
BibTeX
@misc{reference.wolfram_2025_minimumvertexcoloring, author="Wolfram Research", title="{MinimumVertexColoring}", year="2012", howpublished="\url{https://reference.wolfram.com/language/Combinatorica/ref/MinimumVertexColoring.html}", note=[Accessed: 13-August-2025]}
BibLaTeX
@online{reference.wolfram_2025_minimumvertexcoloring, organization={Wolfram Research}, title={MinimumVertexColoring}, year={2012}, url={https://reference.wolfram.com/language/Combinatorica/ref/MinimumVertexColoring.html}, note=[Accessed: 13-August-2025]}