Combinatorica`
Combinatorica`

PartitionLattice

As of Version 10, most of the functionality of the Combinatorica package is built into the Wolfram System. »

PartitionLattice[n]

returns a Hasse diagram of the partially ordered set on set partitions of through n in which if is finer than , that is, each block in is contained in some block in .

更多信息和选项

  • To use PartitionLattice, you first need to load the Combinatorica Package using Needs["Combinatorica`"].
  • The function takes two options: Type and VertexLabel, with default values Undirected and False, respectively.
  • When Type is set to Directed, the function produces the underlying directed acyclic graph.
  • When VertexLabel is set to True, labels are produced for the vertices.
Wolfram Research (2012),PartitionLattice,Wolfram 语言函数,https://reference.wolfram.com/language/Combinatorica/ref/PartitionLattice.html.

文本

Wolfram Research (2012),PartitionLattice,Wolfram 语言函数,https://reference.wolfram.com/language/Combinatorica/ref/PartitionLattice.html.

CMS

Wolfram 语言. 2012. "PartitionLattice." Wolfram 语言与系统参考资料中心. Wolfram Research. https://reference.wolfram.com/language/Combinatorica/ref/PartitionLattice.html.

APA

Wolfram 语言. (2012). PartitionLattice. Wolfram 语言与系统参考资料中心. 追溯自 https://reference.wolfram.com/language/Combinatorica/ref/PartitionLattice.html 年

BibTeX

@misc{reference.wolfram_2024_partitionlattice, author="Wolfram Research", title="{PartitionLattice}", year="2012", howpublished="\url{https://reference.wolfram.com/language/Combinatorica/ref/PartitionLattice.html}", note=[Accessed: 18-November-2024 ]}

BibLaTeX

@online{reference.wolfram_2024_partitionlattice, organization={Wolfram Research}, title={PartitionLattice}, year={2012}, url={https://reference.wolfram.com/language/Combinatorica/ref/PartitionLattice.html}, note=[Accessed: 18-November-2024 ]}