ComputationalGeometry`
ComputationalGeometry`

BoundedDiagram

As of Version 10, all the functionality of the ComputationalGeometry package is built into the Wolfram System. »

BoundedDiagram[{{a1,b1},},{{x1,y1},}]

yields the bounded Voronoi diagram of the points {x1,y1},{x2,y2}, where the bound is the convex polygon formed from the points {{a1,b1},}.

BoundedDiagram[{{a1,b1},},{{x1,y1},},val]

takes val to be the Delaunay triangulation vertex adjacency list.

BoundedDiagram[{{a1,b1},},{{x1,y1},},val,hull]

takes hull to be the convex hull index list.

更多信息和选项

  • BoundedDiagram functionality is now available in the built-in Wolfram Language function VoronoiMesh.
  • To use BoundedDiagram, you first need to load the Computational Geometry Package using Needs["ComputationalGeometry`"].
  • The bounded Voronoi diagram is represented by two lists, a vertex coordinate list and a vertex adjacency list.
  • An element {i,{v1,}} of the vertex adjacency list corresponds to the point {xi,yi}, and the indices v1, identify the vertices in the vertex coordinate list that form its bounding polygon.
  • BoundedDiagram begins by finding the unbounded Voronoi diagram and then incorporating the bounding polygon vertices into the diagram.
  • The bounding polygon should be large enough to contain all the points {xi,yi}.
  • The optional arguments val and hull may be used to speed up the initial Voronoi diagram computation if the Delaunay triangulation and convex hull are available.
Wolfram Research (2012),BoundedDiagram,Wolfram 语言函数,https://reference.wolfram.com/language/ComputationalGeometry/ref/BoundedDiagram.html.

文本

Wolfram Research (2012),BoundedDiagram,Wolfram 语言函数,https://reference.wolfram.com/language/ComputationalGeometry/ref/BoundedDiagram.html.

CMS

Wolfram 语言. 2012. "BoundedDiagram." Wolfram 语言与系统参考资料中心. Wolfram Research. https://reference.wolfram.com/language/ComputationalGeometry/ref/BoundedDiagram.html.

APA

Wolfram 语言. (2012). BoundedDiagram. Wolfram 语言与系统参考资料中心. 追溯自 https://reference.wolfram.com/language/ComputationalGeometry/ref/BoundedDiagram.html 年

BibTeX

@misc{reference.wolfram_2024_boundeddiagram, author="Wolfram Research", title="{BoundedDiagram}", year="2012", howpublished="\url{https://reference.wolfram.com/language/ComputationalGeometry/ref/BoundedDiagram.html}", note=[Accessed: 22-November-2024 ]}

BibLaTeX

@online{reference.wolfram_2024_boundeddiagram, organization={Wolfram Research}, title={BoundedDiagram}, year={2012}, url={https://reference.wolfram.com/language/ComputationalGeometry/ref/BoundedDiagram.html}, note=[Accessed: 22-November-2024 ]}