MultivariateStatistics`
MultivariateStatistics`

QuadraticFormDistribution

QuadraticFormDistribution[{a,b,c},{μ,Σ}]

represents the distribution of a quadratic form z.a.z+b.z+c for multivariate normal z.

更多信息和选项

范例

打开所有单元关闭所有单元

基本范例  (2)

The mean of a quadratic form distribution:

The variance of a quadratic form distribution:

Scope  (3)

Generate a set of pseudorandom numbers that follow a quadratic form distribution:

Possible Issues  (2)

PDF and CDF can only be evaluated using Series:

Series expansion must be about the lower support point for the distribution:

Substitution of invalid parameters into symbolic outputs gives results that are not meaningful:

Wolfram Research (2007),QuadraticFormDistribution,Wolfram 语言函数,https://reference.wolfram.com/language/MultivariateStatistics/ref/QuadraticFormDistribution.html.

文本

Wolfram Research (2007),QuadraticFormDistribution,Wolfram 语言函数,https://reference.wolfram.com/language/MultivariateStatistics/ref/QuadraticFormDistribution.html.

CMS

Wolfram 语言. 2007. "QuadraticFormDistribution." Wolfram 语言与系统参考资料中心. Wolfram Research. https://reference.wolfram.com/language/MultivariateStatistics/ref/QuadraticFormDistribution.html.

APA

Wolfram 语言. (2007). QuadraticFormDistribution. Wolfram 语言与系统参考资料中心. 追溯自 https://reference.wolfram.com/language/MultivariateStatistics/ref/QuadraticFormDistribution.html 年

BibTeX

@misc{reference.wolfram_2024_quadraticformdistribution, author="Wolfram Research", title="{QuadraticFormDistribution}", year="2007", howpublished="\url{https://reference.wolfram.com/language/MultivariateStatistics/ref/QuadraticFormDistribution.html}", note=[Accessed: 22-November-2024 ]}

BibLaTeX

@online{reference.wolfram_2024_quadraticformdistribution, organization={Wolfram Research}, title={QuadraticFormDistribution}, year={2007}, url={https://reference.wolfram.com/language/MultivariateStatistics/ref/QuadraticFormDistribution.html}, note=[Accessed: 22-November-2024 ]}