Tabular Transformation

Tabular transformations are typically used to refine data in a way that makes insights and understanding obvious. They range from simple augmentation of data by deriving new columns from existing ones to summarizing data into different groups. Often transformations are used in conjunction with other tasks, such as visualization and modeling.  The Wolfram Language provides a set of highly optimized tabular transformation functions that are easy to use and scale to large data.

Modifying Tabular Objects

TransformColumns compute columns from values in each row

ConstructColumns extract or construct columns

ColumnwiseThread  ▪  ColumnwiseValue  ▪  Elementwise

Reordering Tabular Objects »

SortBy  ▪  ReverseSortBy  ▪  NumericalSort  ▪  AlphabeticSort  ▪  ...

Simple and Grouped Aggregation »

AggregateRows simple or grouped aggregation

Total  ▪  Count  ▪  Mean  ▪  Median  ▪  Max  ▪  StandardDeviation  ▪  ...

PivotTable compute a pivot table with multiple row and column pivots and aggregation

IncludeGroupAggregates whether to include aggregation for each subgroup

Tabular Objects »

Tabular column-oriented tabular data

ToTabular  ▪  TabularStructure  ▪  Select  ▪  TakeLargestBy  ▪  ...

Tabular Data Cleaning »

TransformMissing how to handle missing values, impute values, etc.

RenameColumns  ▪  CastColumns  ▪  PivotToColumns  ▪  TransformAnomalies  ▪  ...