# \$MaxNumber

gives the maximum arbitraryprecision number that can be represented on a particular computer system.

# Details

• A typical value for \$MaxNumber is around 101355718576299609.
• \$MaxNumber is an approximation given to \$MachinePrecision and does not include all bits of the maximum representable number.

# Examples

open allclose all

## Basic Examples(2)

The maximum number representable on this computer system:

Larger numbers yield overflows:

## Properties & Relations(3)

\$MaxNumber has the maximal possible exponent and all significant bits set to 1:

\$MaxNumber×\$MinNumber is approximately 1:

\$MaxNumber is not a machine number:

It does have precision equivalent to that of machine numbers:

Wolfram Research (1996), \$MaxNumber, Wolfram Language function, https://reference.wolfram.com/language/ref/\$MaxNumber.html.

#### Text

Wolfram Research (1996), \$MaxNumber, Wolfram Language function, https://reference.wolfram.com/language/ref/\$MaxNumber.html.

#### CMS

Wolfram Language. 1996. "\$MaxNumber." Wolfram Language & System Documentation Center. Wolfram Research. https://reference.wolfram.com/language/ref/\$MaxNumber.html.

#### APA

Wolfram Language. (1996). \$MaxNumber. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/ref/\$MaxNumber.html

#### BibTeX

@misc{reference.wolfram_2023_\$maxnumber, author="Wolfram Research", title="{\$MaxNumber}", year="1996", howpublished="\url{https://reference.wolfram.com/language/ref/\$MaxNumber.html}", note=[Accessed: 16-April-2024 ]}

#### BibLaTeX

@online{reference.wolfram_2023_\$maxnumber, organization={Wolfram Research}, title={\$MaxNumber}, year={1996}, url={https://reference.wolfram.com/language/ref/\$MaxNumber.html}, note=[Accessed: 16-April-2024 ]}