ChebyshevDistance
✖
ChebyshevDistance
gives the Chebyshev or sup norm distance between vectors u and v.
Examples
open allclose allBasic Examples (2)Summary of the most common use cases
Scope (2)Survey of the scope of standard use cases
Applications (2)Sample problems that can be solved with this function
Cluster data using Chebyshev distance:
https://wolfram.com/xid/0n4jkxomqr2-b2o51i
Demonstrate the triangle inequality:
https://wolfram.com/xid/0n4jkxomqr2-gtq2nu
https://wolfram.com/xid/0n4jkxomqr2-h90eo
https://wolfram.com/xid/0n4jkxomqr2-46i6y
https://wolfram.com/xid/0n4jkxomqr2-c6ia57
Properties & Relations (4)Properties of the function, and connections to other functions
Chebyshev distance is the maximum of absolute differences:
https://wolfram.com/xid/0n4jkxomqr2-g7irif
https://wolfram.com/xid/0n4jkxomqr2-e22otf
ChebyshevDistance is equivalent to a Norm of a difference:
https://wolfram.com/xid/0n4jkxomqr2-dwdnf9
https://wolfram.com/xid/0n4jkxomqr2-mztqe
ChebyshevDistance is less than or equal to ManhattanDistance:
https://wolfram.com/xid/0n4jkxomqr2-kmtu7c
https://wolfram.com/xid/0n4jkxomqr2-djd4cx
ChebyshevDistance is less than or equal to EuclideanDistance:
https://wolfram.com/xid/0n4jkxomqr2-db3fdi
https://wolfram.com/xid/0n4jkxomqr2-ch6t3t
Wolfram Research (2007), ChebyshevDistance, Wolfram Language function, https://reference.wolfram.com/language/ref/ChebyshevDistance.html.
Text
Wolfram Research (2007), ChebyshevDistance, Wolfram Language function, https://reference.wolfram.com/language/ref/ChebyshevDistance.html.
Wolfram Research (2007), ChebyshevDistance, Wolfram Language function, https://reference.wolfram.com/language/ref/ChebyshevDistance.html.
CMS
Wolfram Language. 2007. "ChebyshevDistance." Wolfram Language & System Documentation Center. Wolfram Research. https://reference.wolfram.com/language/ref/ChebyshevDistance.html.
Wolfram Language. 2007. "ChebyshevDistance." Wolfram Language & System Documentation Center. Wolfram Research. https://reference.wolfram.com/language/ref/ChebyshevDistance.html.
APA
Wolfram Language. (2007). ChebyshevDistance. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/ref/ChebyshevDistance.html
Wolfram Language. (2007). ChebyshevDistance. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/ref/ChebyshevDistance.html
BibTeX
@misc{reference.wolfram_2024_chebyshevdistance, author="Wolfram Research", title="{ChebyshevDistance}", year="2007", howpublished="\url{https://reference.wolfram.com/language/ref/ChebyshevDistance.html}", note=[Accessed: 09-January-2025
]}
BibLaTeX
@online{reference.wolfram_2024_chebyshevdistance, organization={Wolfram Research}, title={ChebyshevDistance}, year={2007}, url={https://reference.wolfram.com/language/ref/ChebyshevDistance.html}, note=[Accessed: 09-January-2025
]}