WOLFRAM

ChineseRemainder[{r1,r2,},{m1,m2,}]

gives the smallest with that satisfies all the integer congruences .

ChineseRemainder[{r1,r2,},{m1,m2,},d]

gives the smallest with that satisfies all the integer congruences .

Details

  • If no solution for exists, ChineseRemainder returns unevaluated.
  • If all 0ri<mi, then the result satisfies .
  • ChineseRemainder[{r1,r2,},{m1,m2,}] gives a solution with .
  • ChineseRemainder[{r1,r2,},{m1,m2,},d] gives a solution with .

Examples

open allclose all

Basic Examples  (2)Summary of the most common use cases

The smallest positive integer that satisfies and :

Out[1]=1

Find the smallest positive integer giving remainders when divided by :

Out[1]=1

Applications  (3)Sample problems that can be solved with this function

Database encryption and decryption:

Out[1]=1

Key generation:

Out[2]=2

Encrypted data:

Out[3]=3

Decryption:

Out[4]=4

Define a residue number system:

Numbers and their representation in a residue system:

Out[3]=3
Out[4]=4

Multiplying and recovering in the residue system:

Out[5]=5
Out[6]=6

Adding and recovering:

Out[7]=7
Out[8]=8

Modular computation of a determinant:

Modular determinants:

Out[2]=2
Out[3]=3

Recover result:

Out[4]=4

Shift residue to be symmetric:

Out[5]=5
Out[6]=6

Properties & Relations  (1)Properties of the function, and connections to other functions

Solve congruential equations using Reduce or FindInstance:

Out[1]=1
Out[2]=2
Out[3]=3

Possible Issues  (1)Common pitfalls and unexpected behavior

Not all congruential equations have a solution:

Out[1]=1

A solution exists when Mod[ri,GCD[m1,m2,]]==Mod[rj,GCD[m1,m2,]]:

Out[2]=2
Wolfram Research (2007), ChineseRemainder, Wolfram Language function, https://reference.wolfram.com/language/ref/ChineseRemainder.html (updated 2016).
Wolfram Research (2007), ChineseRemainder, Wolfram Language function, https://reference.wolfram.com/language/ref/ChineseRemainder.html (updated 2016).

Text

Wolfram Research (2007), ChineseRemainder, Wolfram Language function, https://reference.wolfram.com/language/ref/ChineseRemainder.html (updated 2016).

Wolfram Research (2007), ChineseRemainder, Wolfram Language function, https://reference.wolfram.com/language/ref/ChineseRemainder.html (updated 2016).

CMS

Wolfram Language. 2007. "ChineseRemainder." Wolfram Language & System Documentation Center. Wolfram Research. Last Modified 2016. https://reference.wolfram.com/language/ref/ChineseRemainder.html.

Wolfram Language. 2007. "ChineseRemainder." Wolfram Language & System Documentation Center. Wolfram Research. Last Modified 2016. https://reference.wolfram.com/language/ref/ChineseRemainder.html.

APA

Wolfram Language. (2007). ChineseRemainder. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/ref/ChineseRemainder.html

Wolfram Language. (2007). ChineseRemainder. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/ref/ChineseRemainder.html

BibTeX

@misc{reference.wolfram_2025_chineseremainder, author="Wolfram Research", title="{ChineseRemainder}", year="2016", howpublished="\url{https://reference.wolfram.com/language/ref/ChineseRemainder.html}", note=[Accessed: 04-April-2025 ]}

@misc{reference.wolfram_2025_chineseremainder, author="Wolfram Research", title="{ChineseRemainder}", year="2016", howpublished="\url{https://reference.wolfram.com/language/ref/ChineseRemainder.html}", note=[Accessed: 04-April-2025 ]}

BibLaTeX

@online{reference.wolfram_2025_chineseremainder, organization={Wolfram Research}, title={ChineseRemainder}, year={2016}, url={https://reference.wolfram.com/language/ref/ChineseRemainder.html}, note=[Accessed: 04-April-2025 ]}

@online{reference.wolfram_2025_chineseremainder, organization={Wolfram Research}, title={ChineseRemainder}, year={2016}, url={https://reference.wolfram.com/language/ref/ChineseRemainder.html}, note=[Accessed: 04-April-2025 ]}