is an option for ClassifierMeasurements, LearnedDistribution and other functions to specify if numeric results should be returned along with their uncertainty.


ComputeUncertainty
is an option for ClassifierMeasurements, LearnedDistribution and other functions to specify if numeric results should be returned along with their uncertainty.
Details

- Uncertainties are given using Around.
- The uncertainty interval generated typically corresponds to one standard deviation.
Examples
Basic Examples (2)
Create and test a classifier using ClassifierMeasurements:
Measure the accuracy along with its uncertainty:
Measure the F1 scores along with their uncertainties:
Train a "Multinormal" distribution on a nominal dataset:
Because of the necessary preprocessing, the PDF computation is not exact:
Use ComputeUncertainty to obtain the uncertainty on the result:
Increase MaxIterations to improve the estimation precision:
Related Guides
History
Text
Wolfram Research (2019), ComputeUncertainty, Wolfram Language function, https://reference.wolfram.com/language/ref/ComputeUncertainty.html.
CMS
Wolfram Language. 2019. "ComputeUncertainty." Wolfram Language & System Documentation Center. Wolfram Research. https://reference.wolfram.com/language/ref/ComputeUncertainty.html.
APA
Wolfram Language. (2019). ComputeUncertainty. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/ref/ComputeUncertainty.html
BibTeX
@misc{reference.wolfram_2025_computeuncertainty, author="Wolfram Research", title="{ComputeUncertainty}", year="2019", howpublished="\url{https://reference.wolfram.com/language/ref/ComputeUncertainty.html}", note=[Accessed: 16-August-2025]}
BibLaTeX
@online{reference.wolfram_2025_computeuncertainty, organization={Wolfram Research}, title={ComputeUncertainty}, year={2019}, url={https://reference.wolfram.com/language/ref/ComputeUncertainty.html}, note=[Accessed: 16-August-2025]}