DirichletEta
✖
DirichletEta
Details

- The Dirichlet eta function is also known as the alternating zeta function.
- DirichletEta is a mathematical function, suitable for both symbolic and numeric manipulation.
- For
, the Dirichlet eta function is defined as
.
- For certain special arguments, DirichletEta automatically evaluates to exact values.
- DirichletEta is an entire function with branch cut discontinuities.
- DirichletEta can be evaluated to arbitrary numerical precision.
- DirichletEta automatically threads over lists.
- DirichletEta can be used with Interval and CenteredInterval objects. »
Examples
open allclose allBasic Examples (3)Summary of the most common use cases
Scope (6)Survey of the scope of standard use cases
DirichletEta is neither non-decreasing nor non-increasing:

https://wolfram.com/xid/0hyvexhtj8dm5nbv-2ra8g

DirichletEta is not injective:

https://wolfram.com/xid/0hyvexhtj8dm5nbv-c9npzh


https://wolfram.com/xid/0hyvexhtj8dm5nbv-b5buvp

DirichletEta is neither non-negative nor non-positive:

https://wolfram.com/xid/0hyvexhtj8dm5nbv-dvzykj

DirichletEta is neither convex nor concave:

https://wolfram.com/xid/0hyvexhtj8dm5nbv-l0srvu

Compute worst-case guaranteed intervals using Interval and CenteredInterval objects:

https://wolfram.com/xid/0hyvexhtj8dm5nbv-bq4opg


https://wolfram.com/xid/0hyvexhtj8dm5nbv-cmdnbi

Or compute average-case statistical intervals using Around:

https://wolfram.com/xid/0hyvexhtj8dm5nbv-cw18bq

Compute the elementwise values of an array:

https://wolfram.com/xid/0hyvexhtj8dm5nbv-thgd2

Or compute the matrix DirichletEta function using MatrixFunction:

https://wolfram.com/xid/0hyvexhtj8dm5nbv-o5jpo

Properties & Relations (1)Properties of the function, and connections to other functions
Verify the interrelationship among the DirichletEta, DirichletLambda and Zeta functions:

https://wolfram.com/xid/0hyvexhtj8dm5nbv-cr76jt

Wolfram Research (2014), DirichletEta, Wolfram Language function, https://reference.wolfram.com/language/ref/DirichletEta.html (updated 2022).
Text
Wolfram Research (2014), DirichletEta, Wolfram Language function, https://reference.wolfram.com/language/ref/DirichletEta.html (updated 2022).
Wolfram Research (2014), DirichletEta, Wolfram Language function, https://reference.wolfram.com/language/ref/DirichletEta.html (updated 2022).
CMS
Wolfram Language. 2014. "DirichletEta." Wolfram Language & System Documentation Center. Wolfram Research. Last Modified 2022. https://reference.wolfram.com/language/ref/DirichletEta.html.
Wolfram Language. 2014. "DirichletEta." Wolfram Language & System Documentation Center. Wolfram Research. Last Modified 2022. https://reference.wolfram.com/language/ref/DirichletEta.html.
APA
Wolfram Language. (2014). DirichletEta. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/ref/DirichletEta.html
Wolfram Language. (2014). DirichletEta. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/ref/DirichletEta.html
BibTeX
@misc{reference.wolfram_2025_dirichleteta, author="Wolfram Research", title="{DirichletEta}", year="2022", howpublished="\url{https://reference.wolfram.com/language/ref/DirichletEta.html}", note=[Accessed: 02-April-2025
]}
BibLaTeX
@online{reference.wolfram_2025_dirichleteta, organization={Wolfram Research}, title={DirichletEta}, year={2022}, url={https://reference.wolfram.com/language/ref/DirichletEta.html}, note=[Accessed: 02-April-2025
]}