EuclideanDistance

EuclideanDistance[u,v]

给出向量 uv 之间的欧几里得距离.

更多信息

范例

打开所有单元关闭所有单元

基本范例  (2)

两个向量之间的欧几里得距离:

两个数值向量之间的欧几里得距离:

范围  (2)

计算任意两个等长度向量之间的距离:

计算任意精度向量之间的距离:

应用  (2)

利用欧几里得距离为数据分组:

证明三角不等式:

属性和关系  (7)

EuclideanDistance 等价于一个差的 Norm

EuclideanDistance 的平方是 SquaredEuclideanDistance

EuclideanDistance 大于或等于 ChessboardDistance:

CosineDistance 包含一个点积,由距离原点的欧几里得距离确定大小:

CorrelationDistance 包含一个点积,由距离平均值的欧几里得距离确定大小:

StandardDeviation 作为一个距离 MeanEuclideanDistance

EuclideanDistance 从一个差的 RootMeanSquare 计算得出:

Wolfram Research (2007),EuclideanDistance,Wolfram 语言函数,https://reference.wolfram.com/language/ref/EuclideanDistance.html.

文本

Wolfram Research (2007),EuclideanDistance,Wolfram 语言函数,https://reference.wolfram.com/language/ref/EuclideanDistance.html.

CMS

Wolfram 语言. 2007. "EuclideanDistance." Wolfram 语言与系统参考资料中心. Wolfram Research. https://reference.wolfram.com/language/ref/EuclideanDistance.html.

APA

Wolfram 语言. (2007). EuclideanDistance. Wolfram 语言与系统参考资料中心. 追溯自 https://reference.wolfram.com/language/ref/EuclideanDistance.html 年

BibTeX

@misc{reference.wolfram_2024_euclideandistance, author="Wolfram Research", title="{EuclideanDistance}", year="2007", howpublished="\url{https://reference.wolfram.com/language/ref/EuclideanDistance.html}", note=[Accessed: 22-November-2024 ]}

BibLaTeX

@online{reference.wolfram_2024_euclideandistance, organization={Wolfram Research}, title={EuclideanDistance}, year={2007}, url={https://reference.wolfram.com/language/ref/EuclideanDistance.html}, note=[Accessed: 22-November-2024 ]}