WOLFRAM

represents an exact Blackman window function of x.

Details

  • ExactBlackmanWindow is a window function typically used for finite impulse response (FIR) filter design and spectral analysis.
  • Window functions are used in applications where data is processed in short segments and have a smoothing effect by gradually tapering data values to zero at the ends of each segment.
  • ExactBlackmanWindow[x] is equal to  (4620 cos(2 pi x)+715 cos(4 pi x)+3969)/(9304) -1/2<=x<=1/2; 0 TemplateBox[{x}, Abs]>1/2;
  • ExactBlackmanWindow automatically threads over lists.

Examples

open allclose all

Basic Examples  (3)Summary of the most common use cases

Shape of a 1D exact Blackman window:

Out[1]=1

Shape of a 2D exact Blackman window:

Out[1]=1

Extract the continuous function representing the exact Blackman window:

Out[1]=1

Scope  (4)Survey of the scope of standard use cases

Evaluate numerically:

Out[1]=1

Translated and dilated exact Blackman window:

Out[1]=1

2D exact Blackman window with a circular support:

Out[1]=1

Discrete exact Blackman window of length 15:

Out[1]=1

Discrete 15×10 2D exact Blackman window:

Out[2]=2

Applications  (3)Sample problems that can be solved with this function

Create a moving average filter of length 11:

Out[1]=1

Smooth the filter using a exact Blackman window:

Log-magnitude plot of the frequency spectrum of the filters:

Out[3]=3

Use a window specification to calculate sample PowerSpectralDensity:

Calculate the spectrum:

Compare to spectral density calculated without a windowing function:

Out[4]=4

The plot shows that window smooths the spectral density:

Out[5]=5

Compare to the theoretical spectral density of the process:

Out[6]=6

Use a window specification for time series estimation:

Specify window for spectral estimator:

Out[2]=2

Properties & Relations  (2)Properties of the function, and connections to other functions

The area under the exact Blackman window:

Out[1]=1

Normalize to create a window with unit area:

Out[2]=2

Fourier transform of the exact Blackman window:

Out[1]=1

Power spectrum of the exact Blackman window:

Out[2]=2
Wolfram Research (2012), ExactBlackmanWindow, Wolfram Language function, https://reference.wolfram.com/language/ref/ExactBlackmanWindow.html.
Wolfram Research (2012), ExactBlackmanWindow, Wolfram Language function, https://reference.wolfram.com/language/ref/ExactBlackmanWindow.html.

Text

Wolfram Research (2012), ExactBlackmanWindow, Wolfram Language function, https://reference.wolfram.com/language/ref/ExactBlackmanWindow.html.

Wolfram Research (2012), ExactBlackmanWindow, Wolfram Language function, https://reference.wolfram.com/language/ref/ExactBlackmanWindow.html.

CMS

Wolfram Language. 2012. "ExactBlackmanWindow." Wolfram Language & System Documentation Center. Wolfram Research. https://reference.wolfram.com/language/ref/ExactBlackmanWindow.html.

Wolfram Language. 2012. "ExactBlackmanWindow." Wolfram Language & System Documentation Center. Wolfram Research. https://reference.wolfram.com/language/ref/ExactBlackmanWindow.html.

APA

Wolfram Language. (2012). ExactBlackmanWindow. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/ref/ExactBlackmanWindow.html

Wolfram Language. (2012). ExactBlackmanWindow. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/ref/ExactBlackmanWindow.html

BibTeX

@misc{reference.wolfram_2025_exactblackmanwindow, author="Wolfram Research", title="{ExactBlackmanWindow}", year="2012", howpublished="\url{https://reference.wolfram.com/language/ref/ExactBlackmanWindow.html}", note=[Accessed: 10-July-2025 ]}

@misc{reference.wolfram_2025_exactblackmanwindow, author="Wolfram Research", title="{ExactBlackmanWindow}", year="2012", howpublished="\url{https://reference.wolfram.com/language/ref/ExactBlackmanWindow.html}", note=[Accessed: 10-July-2025 ]}

BibLaTeX

@online{reference.wolfram_2025_exactblackmanwindow, organization={Wolfram Research}, title={ExactBlackmanWindow}, year={2012}, url={https://reference.wolfram.com/language/ref/ExactBlackmanWindow.html}, note=[Accessed: 10-July-2025 ]}

@online{reference.wolfram_2025_exactblackmanwindow, organization={Wolfram Research}, title={ExactBlackmanWindow}, year={2012}, url={https://reference.wolfram.com/language/ref/ExactBlackmanWindow.html}, note=[Accessed: 10-July-2025 ]}