# FourierParameters

is an option to Fourier and related functions that specifies the conventions to use in computing Fourier transforms.

# Details

• A typical setting is FourierParameters->{a,b}.
• Some common choices for {a,b} are {0,1} (default), {-1,1} (data analysis), {1,-1} (signal processing).

# Examples

open allclose all

## Basic Examples(2)

Use a nondefault definition of the discrete Fourier transform:

Use the same definition to get the inverse:

A nondefault definition used for the continuous Fourier transform:

## Scope(3)

A typical pure mathematics or systems-engineering definition of Fourier transform:

Use the same definition for the inverse transform:

A typical data-analysis definition of discrete Fourier transform:

Use the same definition to get the correct inverse:

A common signal-processing definition of Fourier transform:

Discrete Fourier transform:

Discrete-time Fourier transform:

## Possible Issues(2)

The same FourierParameters values need to be used for both forward and inverse transforms:

Here the inverse uses a different choice of FourierParameters:

The second parameter needs to be relatively prime to the data length to guarantee invertibility:

Wolfram Research (1999), FourierParameters, Wolfram Language function, https://reference.wolfram.com/language/ref/FourierParameters.html.

#### Text

Wolfram Research (1999), FourierParameters, Wolfram Language function, https://reference.wolfram.com/language/ref/FourierParameters.html.

#### CMS

Wolfram Language. 1999. "FourierParameters." Wolfram Language & System Documentation Center. Wolfram Research. https://reference.wolfram.com/language/ref/FourierParameters.html.

#### APA

Wolfram Language. (1999). FourierParameters. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/ref/FourierParameters.html

#### BibTeX

@misc{reference.wolfram_2024_fourierparameters, author="Wolfram Research", title="{FourierParameters}", year="1999", howpublished="\url{https://reference.wolfram.com/language/ref/FourierParameters.html}", note=[Accessed: 17-June-2024 ]}

#### BibLaTeX

@online{reference.wolfram_2024_fourierparameters, organization={Wolfram Research}, title={FourierParameters}, year={1999}, url={https://reference.wolfram.com/language/ref/FourierParameters.html}, note=[Accessed: 17-June-2024 ]}