FrobeniusNumber
✖
FrobeniusNumber
Details

- The Frobenius number of a1,…,an is the largest integer b for which the Frobenius equation a1x1+…+anxn==b has no non-negative integer solutions. The ai must be positive integers.
- If the integers ai are not relatively prime, the result is Infinity.
- If one of the ai is the integer
, then the result is
.
- If b is the Frobenius number of a1,…,an, then FrobeniusSolve[{a1,…,an},b] returns {}.
Examples
open allclose allBasic Examples (1)Summary of the most common use cases
Applications (2)Sample problems that can be solved with this function
Make an array of Frobenius numbers:
In[1]:=1

✖
https://wolfram.com/xid/0tp7rsbqdmfdtu-gvwa1
Out[1]=1

In[1]:=1

✖
https://wolfram.com/xid/0tp7rsbqdmfdtu-ekx90g
Out[1]=1

In[2]:=2

✖
https://wolfram.com/xid/0tp7rsbqdmfdtu-ge4c7m
Out[2]=2

Frobenius numbers of length-4 runs:
In[3]:=3

✖
https://wolfram.com/xid/0tp7rsbqdmfdtu-6xeqr
Out[3]=3

Wolfram Research (2007), FrobeniusNumber, Wolfram Language function, https://reference.wolfram.com/language/ref/FrobeniusNumber.html.
✖
Wolfram Research (2007), FrobeniusNumber, Wolfram Language function, https://reference.wolfram.com/language/ref/FrobeniusNumber.html.
Text
Wolfram Research (2007), FrobeniusNumber, Wolfram Language function, https://reference.wolfram.com/language/ref/FrobeniusNumber.html.
✖
Wolfram Research (2007), FrobeniusNumber, Wolfram Language function, https://reference.wolfram.com/language/ref/FrobeniusNumber.html.
CMS
Wolfram Language. 2007. "FrobeniusNumber." Wolfram Language & System Documentation Center. Wolfram Research. https://reference.wolfram.com/language/ref/FrobeniusNumber.html.
✖
Wolfram Language. 2007. "FrobeniusNumber." Wolfram Language & System Documentation Center. Wolfram Research. https://reference.wolfram.com/language/ref/FrobeniusNumber.html.
APA
Wolfram Language. (2007). FrobeniusNumber. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/ref/FrobeniusNumber.html
✖
Wolfram Language. (2007). FrobeniusNumber. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/ref/FrobeniusNumber.html
BibTeX
✖
@misc{reference.wolfram_2025_frobeniusnumber, author="Wolfram Research", title="{FrobeniusNumber}", year="2007", howpublished="\url{https://reference.wolfram.com/language/ref/FrobeniusNumber.html}", note=[Accessed: 21-June-2025
]}
BibLaTeX
✖
@online{reference.wolfram_2025_frobeniusnumber, organization={Wolfram Research}, title={FrobeniusNumber}, year={2007}, url={https://reference.wolfram.com/language/ref/FrobeniusNumber.html}, note=[Accessed: 21-June-2025
]}