FunctionSpace

FunctionSpace

is an option for FindSequenceFunction and related functions that specifies the space of functions to consider for representations.

Details

  • With an explicit setting for FunctionSpace->s, only functions of type s will be considered.
  • FunctionSpace->{s1,s2,} specifies that types s1, s2, should be considered.
  • FunctionSpace->All uses all available types.
  • Possible types of discrete functions include:
  • "Polynomial"polynomials
    "RationalFunction"rational functions
    "HypergeometricTerm"hypergeometric terms
    "ConstantRecursive"constant-coefficient difference equation solutions
    "HolonomicSequence"polynomial-coefficient difference equation solutions
  • Possible types of continuous functions include:
  • "Polynomial"polynomials
    "RationalFunction"rational functions
    "Hypergeometric"hypergeometric functions
    "HolonomicFunction"polynomial-coefficient differential equation solutions

Examples

Basic Examples  (1)

By default, a small generating function is found if possible:

Use FunctionSpace to control the forms found:

Wolfram Research (2008), FunctionSpace, Wolfram Language function, https://reference.wolfram.com/language/ref/FunctionSpace.html.

Text

Wolfram Research (2008), FunctionSpace, Wolfram Language function, https://reference.wolfram.com/language/ref/FunctionSpace.html.

CMS

Wolfram Language. 2008. "FunctionSpace." Wolfram Language & System Documentation Center. Wolfram Research. https://reference.wolfram.com/language/ref/FunctionSpace.html.

APA

Wolfram Language. (2008). FunctionSpace. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/ref/FunctionSpace.html

BibTeX

@misc{reference.wolfram_2024_functionspace, author="Wolfram Research", title="{FunctionSpace}", year="2008", howpublished="\url{https://reference.wolfram.com/language/ref/FunctionSpace.html}", note=[Accessed: 21-January-2025 ]}

BibLaTeX

@online{reference.wolfram_2024_functionspace, organization={Wolfram Research}, title={FunctionSpace}, year={2008}, url={https://reference.wolfram.com/language/ref/FunctionSpace.html}, note=[Accessed: 21-January-2025 ]}