GaborWavelet
✖
GaborWavelet
詳細

- GaborWaveletは複素非直交ウェーブレット族を定義する.
- ウェーブレット関数(
)は
で与えられる.
- GaborWaveletは,ContinuousWaveletTransform,WaveletPsi等の関数で使うことができる.
例題
すべて開くすべて閉じる例 (1)基本的な使用例
スコープ (2)標準的な使用例のスコープの概要
GaborWaveletを使ってContinuousWaveletTransformを行うことができる:

https://wolfram.com/xid/0cf26kf8mgzvu82-89xwi8

https://wolfram.com/xid/0cf26kf8mgzvu82-tt4bam

https://wolfram.com/xid/0cf26kf8mgzvu82-fmzdpm


https://wolfram.com/xid/0cf26kf8mgzvu82-50xym5

WaveletScalogramを使ってウェーブレット係数のタイムスケール表現を得ることができる:

https://wolfram.com/xid/0cf26kf8mgzvu82-yu8t38

InverseWaveletTransformを使って信号を再構築する:

https://wolfram.com/xid/0cf26kf8mgzvu82-unkpz2


https://wolfram.com/xid/0cf26kf8mgzvu82-os7mbq

https://wolfram.com/xid/0cf26kf8mgzvu82-upws4

アプリケーション (1)この関数で解くことのできる問題の例

https://wolfram.com/xid/0cf26kf8mgzvu82-g6xl9b

https://wolfram.com/xid/0cf26kf8mgzvu82-txbe9d

https://wolfram.com/xid/0cf26kf8mgzvu82-nxoii2

WaveletScalogramをプロットして10Hzの周波数が第7オクターブによって分解されたことを確かめる:

https://wolfram.com/xid/0cf26kf8mgzvu82-ghinpo

特性と関係 (4)この関数の特性および他の関数との関係
ある種の周波数を伴うGaborWaveletはMorletWaveletに似ている:

https://wolfram.com/xid/0cf26kf8mgzvu82-6eu5kw

https://wolfram.com/xid/0cf26kf8mgzvu82-tcrcaq


https://wolfram.com/xid/0cf26kf8mgzvu82-nrw6n3


https://wolfram.com/xid/0cf26kf8mgzvu82-0xiz8m


https://wolfram.com/xid/0cf26kf8mgzvu82-kfn202


https://wolfram.com/xid/0cf26kf8mgzvu82-jyhlhp

GaborWaveletはスケーリング関数を持たない:

https://wolfram.com/xid/0cf26kf8mgzvu82-valwr0

GaborWavelet[w]の中心周波数はほぼ w である:

https://wolfram.com/xid/0cf26kf8mgzvu82-czh0yo

https://wolfram.com/xid/0cf26kf8mgzvu82-6yux9d


https://wolfram.com/xid/0cf26kf8mgzvu82-4ggehb

シヌソイドで中心周波数にオーバーレイされたウェーブレット関数の実部をプロットする:

https://wolfram.com/xid/0cf26kf8mgzvu82-wnweux


https://wolfram.com/xid/0cf26kf8mgzvu82-7r6uvy

Wolfram Research (2010), GaborWavelet, Wolfram言語関数, https://reference.wolfram.com/language/ref/GaborWavelet.html.
テキスト
Wolfram Research (2010), GaborWavelet, Wolfram言語関数, https://reference.wolfram.com/language/ref/GaborWavelet.html.
Wolfram Research (2010), GaborWavelet, Wolfram言語関数, https://reference.wolfram.com/language/ref/GaborWavelet.html.
CMS
Wolfram Language. 2010. "GaborWavelet." Wolfram Language & System Documentation Center. Wolfram Research. https://reference.wolfram.com/language/ref/GaborWavelet.html.
Wolfram Language. 2010. "GaborWavelet." Wolfram Language & System Documentation Center. Wolfram Research. https://reference.wolfram.com/language/ref/GaborWavelet.html.
APA
Wolfram Language. (2010). GaborWavelet. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/ref/GaborWavelet.html
Wolfram Language. (2010). GaborWavelet. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/ref/GaborWavelet.html
BibTeX
@misc{reference.wolfram_2025_gaborwavelet, author="Wolfram Research", title="{GaborWavelet}", year="2010", howpublished="\url{https://reference.wolfram.com/language/ref/GaborWavelet.html}", note=[Accessed: 15-May-2025
]}
BibLaTeX
@online{reference.wolfram_2025_gaborwavelet, organization={Wolfram Research}, title={GaborWavelet}, year={2010}, url={https://reference.wolfram.com/language/ref/GaborWavelet.html}, note=[Accessed: 15-May-2025
]}