WOLFRAM

HeunDPrime[q,α,γ,δ,ϵ,z]

gives the -derivative of the HeunD function.

Details

  • Mathematical function, suitable for both symbolic and numerical manipulation.
  • HeunDPrime belongs to the Heun class of functions.
  • For certain special arguments, HeunDPrime automatically evaluates to exact values.
  • HeunDPrime can be evaluated for arbitrary complex parameters.
  • HeunDPrime can be evaluated to arbitrary numerical precision.
  • HeunDPrime automatically threads over lists.

Examples

open allclose all

Basic Examples  (3)Summary of the most common use cases

Evaluate numerically:

Out[1]=1

Plot HeunDPrime:

Out[1]=1

Series expansion of HeunDPrime:

Out[1]=1

Scope  (24)Survey of the scope of standard use cases

Numerical Evaluation  (9)

Evaluate to high precision:

Out[1]=1

The precision of the output tracks the precision of the input:

Out[1]=1

HeunDPrime can take one or more complex number parameters:

Out[1]=1
Out[2]=2

HeunDPrime can take complex number arguments:

Out[1]=1

Finally, HeunDPrime can take all complex number input:

Out[1]=1

Evaluate HeunDPrime efficiently at high precision:

Out[1]=1
Out[2]=2

Lists and matrices:

Out[1]=1
Out[2]=2
Out[3]=3

Evaluate HeunDPrime for points on the real negative axis, bypassing irregular singular origin:

Out[1]=1

Compute the elementwise values of an array:

Out[1]=1

Or compute the matrix HeunDPrime function using MatrixFunction:

Out[2]=2

Specific Values  (2)

Value of HeunDPrime at :

Out[1]=1

Value of HeunDPrime at origin is undetermined:

Out[1]=1

Visualization  (5)

Plot the HeunDPrime function:

Out[1]=1

Plot the absolute value of the HeunDPrime function for complex parameters:

Out[1]=1

Plot HeunDPrime as a function of its second parameter :

Out[1]=1

Plot HeunDPrime as a function of and :

Out[2]=2

Plot the family of HeunDPrime functions for different accessory parameter :

Out[2]=2

Differentiation  (1)

The derivatives of HeunDPrime are calculated using the HeunD function:

Out[1]=1

Integration  (3)

Integral of HeunDPrime gives back HeunD:

Out[1]=1

Definite numerical integral of HeunDPrime:

Out[1]=1

More integrals with HeunDPrime:

Out[1]=1
Out[2]=2

Series Expansions  (4)

Taylor expansion for HeunDPrime at point :

Out[1]=1

Coefficient of the second term in the series expansion of HeunDPrime at :

Out[1]=1

Plots of the first three approximations for HeunDPrime around :

Out[3]=3

Series expansion for HeunDPrime at any ordinary complex point:

Out[1]=1

Applications  (1)Sample problems that can be solved with this function

Use the HeunDPrime function to calculate the derivatives of HeunD:

Out[1]=1

Properties & Relations  (3)Properties of the function, and connections to other functions

HeunDPrime is analytic at the point :

Out[1]=1

Origin is a singular point of the HeunDPrime function:

Out[1]=1

Except for this singular point, HeunDPrime can be calculated at any finite complex :

Out[2]=2

HeunDPrime is the derivative of HeunD:

Out[1]=1

Possible Issues  (1)Common pitfalls and unexpected behavior

HeunDPrime diverges for big arguments:

Out[1]=1
Wolfram Research (2020), HeunDPrime, Wolfram Language function, https://reference.wolfram.com/language/ref/HeunDPrime.html.
Wolfram Research (2020), HeunDPrime, Wolfram Language function, https://reference.wolfram.com/language/ref/HeunDPrime.html.

Text

Wolfram Research (2020), HeunDPrime, Wolfram Language function, https://reference.wolfram.com/language/ref/HeunDPrime.html.

Wolfram Research (2020), HeunDPrime, Wolfram Language function, https://reference.wolfram.com/language/ref/HeunDPrime.html.

CMS

Wolfram Language. 2020. "HeunDPrime." Wolfram Language & System Documentation Center. Wolfram Research. https://reference.wolfram.com/language/ref/HeunDPrime.html.

Wolfram Language. 2020. "HeunDPrime." Wolfram Language & System Documentation Center. Wolfram Research. https://reference.wolfram.com/language/ref/HeunDPrime.html.

APA

Wolfram Language. (2020). HeunDPrime. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/ref/HeunDPrime.html

Wolfram Language. (2020). HeunDPrime. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/ref/HeunDPrime.html

BibTeX

@misc{reference.wolfram_2025_heundprime, author="Wolfram Research", title="{HeunDPrime}", year="2020", howpublished="\url{https://reference.wolfram.com/language/ref/HeunDPrime.html}", note=[Accessed: 11-July-2025 ]}

@misc{reference.wolfram_2025_heundprime, author="Wolfram Research", title="{HeunDPrime}", year="2020", howpublished="\url{https://reference.wolfram.com/language/ref/HeunDPrime.html}", note=[Accessed: 11-July-2025 ]}

BibLaTeX

@online{reference.wolfram_2025_heundprime, organization={Wolfram Research}, title={HeunDPrime}, year={2020}, url={https://reference.wolfram.com/language/ref/HeunDPrime.html}, note=[Accessed: 11-July-2025 ]}

@online{reference.wolfram_2025_heundprime, organization={Wolfram Research}, title={HeunDPrime}, year={2020}, url={https://reference.wolfram.com/language/ref/HeunDPrime.html}, note=[Accessed: 11-July-2025 ]}