HeunDPrime
Details

- Mathematical function, suitable for both symbolic and numerical manipulation.
- HeunDPrime belongs to the Heun class of functions.
- For certain special arguments, HeunDPrime automatically evaluates to exact values.
- HeunDPrime can be evaluated for arbitrary complex parameters.
- HeunDPrime can be evaluated to arbitrary numerical precision.
- HeunDPrime automatically threads over lists.
Examples
open allclose allBasic Examples (3)Summary of the most common use cases

https://wolfram.com/xid/0ywpcl7olqq8-3kfjq

Plot HeunDPrime:

https://wolfram.com/xid/0ywpcl7olqq8-ftt82q

Series expansion of HeunDPrime:

https://wolfram.com/xid/0ywpcl7olqq8-z8evs7

Scope (24)Survey of the scope of standard use cases
Numerical Evaluation (9)

https://wolfram.com/xid/0ywpcl7olqq8-uqurky

The precision of the output tracks the precision of the input:

https://wolfram.com/xid/0ywpcl7olqq8-lw9h0n

HeunDPrime can take one or more complex number parameters:

https://wolfram.com/xid/0ywpcl7olqq8-64g5bd


https://wolfram.com/xid/0ywpcl7olqq8-ft5oo1

HeunDPrime can take complex number arguments:

https://wolfram.com/xid/0ywpcl7olqq8-hunut5

Finally, HeunDPrime can take all complex number input:

https://wolfram.com/xid/0ywpcl7olqq8-56m4mo

Evaluate HeunDPrime efficiently at high precision:

https://wolfram.com/xid/0ywpcl7olqq8-2c7v5i


https://wolfram.com/xid/0ywpcl7olqq8-yaawua


https://wolfram.com/xid/0ywpcl7olqq8-22a9kq


https://wolfram.com/xid/0ywpcl7olqq8-1knfqv


https://wolfram.com/xid/0ywpcl7olqq8-7yjugj

Evaluate HeunDPrime for points on the real negative axis, bypassing irregular singular origin:

https://wolfram.com/xid/0ywpcl7olqq8-vush9d

Compute the elementwise values of an array:

https://wolfram.com/xid/0ywpcl7olqq8-thgd2

Or compute the matrix HeunDPrime function using MatrixFunction:

https://wolfram.com/xid/0ywpcl7olqq8-o5jpo

Specific Values (2)
Value of HeunDPrime at :

https://wolfram.com/xid/0ywpcl7olqq8-nuboa

Value of HeunDPrime at origin is undetermined:

https://wolfram.com/xid/0ywpcl7olqq8-124w4g

Visualization (5)
Plot the HeunDPrime function:

https://wolfram.com/xid/0ywpcl7olqq8-n742f

Plot the absolute value of the HeunDPrime function for complex parameters:

https://wolfram.com/xid/0ywpcl7olqq8-35sv9o

Plot HeunDPrime as a function of its second parameter :

https://wolfram.com/xid/0ywpcl7olqq8-vhxvag

Plot HeunDPrime as a function of and
:

https://wolfram.com/xid/0ywpcl7olqq8-08os2p

https://wolfram.com/xid/0ywpcl7olqq8-8282mz

Plot the family of HeunDPrime functions for different accessory parameter :

https://wolfram.com/xid/0ywpcl7olqq8-y91aow

https://wolfram.com/xid/0ywpcl7olqq8-dnzkk3

Differentiation (1)
The derivatives of HeunDPrime are calculated using the HeunD function:

https://wolfram.com/xid/0ywpcl7olqq8-6eb2k6

Integration (3)
Integral of HeunDPrime gives back HeunD:

https://wolfram.com/xid/0ywpcl7olqq8-ecaem6

Definite numerical integral of HeunDPrime:

https://wolfram.com/xid/0ywpcl7olqq8-3rkya0

More integrals with HeunDPrime:

https://wolfram.com/xid/0ywpcl7olqq8-gjk5w4


https://wolfram.com/xid/0ywpcl7olqq8-q3siwd

Series Expansions (4)
Taylor expansion for HeunDPrime at point :

https://wolfram.com/xid/0ywpcl7olqq8-dux5ad

Coefficient of the second term in the series expansion of HeunDPrime at :

https://wolfram.com/xid/0ywpcl7olqq8-9rxgh1

Plots of the first three approximations for HeunDPrime around :

https://wolfram.com/xid/0ywpcl7olqq8-o3pmof

https://wolfram.com/xid/0ywpcl7olqq8-zopmpn

https://wolfram.com/xid/0ywpcl7olqq8-hrtnwe

Series expansion for HeunDPrime at any ordinary complex point:

https://wolfram.com/xid/0ywpcl7olqq8-ukhgue

Applications (1)Sample problems that can be solved with this function
Use the HeunDPrime function to calculate the derivatives of HeunD:

https://wolfram.com/xid/0ywpcl7olqq8-8yj5vx

Properties & Relations (3)Properties of the function, and connections to other functions
HeunDPrime is analytic at the point :

https://wolfram.com/xid/0ywpcl7olqq8-usyc66

Origin is a singular point of the HeunDPrime function:

https://wolfram.com/xid/0ywpcl7olqq8-zysugy

Except for this singular point, HeunDPrime can be calculated at any finite complex :

https://wolfram.com/xid/0ywpcl7olqq8-txs34a

HeunDPrime is the derivative of HeunD:

https://wolfram.com/xid/0ywpcl7olqq8-eqbaum

Possible Issues (1)Common pitfalls and unexpected behavior
HeunDPrime diverges for big arguments:

https://wolfram.com/xid/0ywpcl7olqq8-8vqyfj

Wolfram Research (2020), HeunDPrime, Wolfram Language function, https://reference.wolfram.com/language/ref/HeunDPrime.html.
Text
Wolfram Research (2020), HeunDPrime, Wolfram Language function, https://reference.wolfram.com/language/ref/HeunDPrime.html.
Wolfram Research (2020), HeunDPrime, Wolfram Language function, https://reference.wolfram.com/language/ref/HeunDPrime.html.
CMS
Wolfram Language. 2020. "HeunDPrime." Wolfram Language & System Documentation Center. Wolfram Research. https://reference.wolfram.com/language/ref/HeunDPrime.html.
Wolfram Language. 2020. "HeunDPrime." Wolfram Language & System Documentation Center. Wolfram Research. https://reference.wolfram.com/language/ref/HeunDPrime.html.
APA
Wolfram Language. (2020). HeunDPrime. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/ref/HeunDPrime.html
Wolfram Language. (2020). HeunDPrime. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/ref/HeunDPrime.html
BibTeX
@misc{reference.wolfram_2025_heundprime, author="Wolfram Research", title="{HeunDPrime}", year="2020", howpublished="\url{https://reference.wolfram.com/language/ref/HeunDPrime.html}", note=[Accessed: 11-July-2025
]}
BibLaTeX
@online{reference.wolfram_2025_heundprime, organization={Wolfram Research}, title={HeunDPrime}, year={2020}, url={https://reference.wolfram.com/language/ref/HeunDPrime.html}, note=[Accessed: 11-July-2025
]}