HeunDPrime
HeunDPrime[q,α,γ,δ,ϵ,z]
gives the -derivative of the HeunD function.
Details
- Mathematical function, suitable for both symbolic and numerical manipulation.
- HeunDPrime belongs to the Heun class of functions.
- For certain special arguments, HeunDPrime automatically evaluates to exact values.
- HeunDPrime can be evaluated for arbitrary complex parameters.
- HeunDPrime can be evaluated to arbitrary numerical precision.
- HeunDPrime automatically threads over lists.
Examples
open allclose allBasic Examples (3)
Scope (24)
Numerical Evaluation (9)
The precision of the output tracks the precision of the input:
HeunDPrime can take one or more complex number parameters:
HeunDPrime can take complex number arguments:
Finally, HeunDPrime can take all complex number input:
Evaluate HeunDPrime efficiently at high precision:
Evaluate HeunDPrime for points on the real negative axis, bypassing irregular singular origin:
Compute the elementwise values of an array:
Or compute the matrix HeunDPrime function using MatrixFunction:
Specific Values (2)
Visualization (5)
Plot the HeunDPrime function:
Plot the absolute value of the HeunDPrime function for complex parameters:
Plot HeunDPrime as a function of its second parameter :
Plot HeunDPrime as a function of and :
Plot the family of HeunDPrime functions for different accessory parameter :
Differentiation (1)
The derivatives of HeunDPrime are calculated using the HeunD function:
Integration (3)
Integral of HeunDPrime gives back HeunD:
Definite numerical integral of HeunDPrime:
More integrals with HeunDPrime:
Series Expansions (4)
Taylor expansion for HeunDPrime at point :
Coefficient of the second term in the series expansion of HeunDPrime at :
Plots of the first three approximations for HeunDPrime around :
Series expansion for HeunDPrime at any ordinary complex point:
Applications (1)
Use the HeunDPrime function to calculate the derivatives of HeunD:
Properties & Relations (3)
HeunDPrime is analytic at the point :
Origin is a singular point of the HeunDPrime function:
Except for this singular point, HeunDPrime can be calculated at any finite complex :
HeunDPrime is the derivative of HeunD:
Possible Issues (1)
HeunDPrime diverges for big arguments:
Text
Wolfram Research (2020), HeunDPrime, Wolfram Language function, https://reference.wolfram.com/language/ref/HeunDPrime.html.
CMS
Wolfram Language. 2020. "HeunDPrime." Wolfram Language & System Documentation Center. Wolfram Research. https://reference.wolfram.com/language/ref/HeunDPrime.html.
APA
Wolfram Language. (2020). HeunDPrime. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/ref/HeunDPrime.html