KVertexConnectedGraphQ

KVertexConnectedGraphQ[g,k]

如果图 gk 顶点连通的,产生 True;否则,产生 False.

更多信息

  • KVertexConnectedGraphQ 也称为 k 连通.
  • 图是 k 顶点连通的,如果每个顶点对之间至少有 k 个顶点不相交路径.

范例

打开所有单元关闭所有单元

基本范例  (1)

测试一个图是否是2连通的:

范围  (5)

测试无向图:

有向图:

多图:

混合图:

对于非 k 连通图,KVertexConnectedGraphQ 给出 False

属性和关系  (2)

完全图 连通的:

无向树是 1 连通的:

Wolfram Research (2014),KVertexConnectedGraphQ,Wolfram 语言函数,https://reference.wolfram.com/language/ref/KVertexConnectedGraphQ.html.

文本

Wolfram Research (2014),KVertexConnectedGraphQ,Wolfram 语言函数,https://reference.wolfram.com/language/ref/KVertexConnectedGraphQ.html.

CMS

Wolfram 语言. 2014. "KVertexConnectedGraphQ." Wolfram 语言与系统参考资料中心. Wolfram Research. https://reference.wolfram.com/language/ref/KVertexConnectedGraphQ.html.

APA

Wolfram 语言. (2014). KVertexConnectedGraphQ. Wolfram 语言与系统参考资料中心. 追溯自 https://reference.wolfram.com/language/ref/KVertexConnectedGraphQ.html 年

BibTeX

@misc{reference.wolfram_2024_kvertexconnectedgraphq, author="Wolfram Research", title="{KVertexConnectedGraphQ}", year="2014", howpublished="\url{https://reference.wolfram.com/language/ref/KVertexConnectedGraphQ.html}", note=[Accessed: 18-November-2024 ]}

BibLaTeX

@online{reference.wolfram_2024_kvertexconnectedgraphq, organization={Wolfram Research}, title={KVertexConnectedGraphQ}, year={2014}, url={https://reference.wolfram.com/language/ref/KVertexConnectedGraphQ.html}, note=[Accessed: 18-November-2024 ]}