ManhattanDistance

ManhattanDistance[u,v]

给出向量 uv 之间的曼哈顿距离或 "城市区段" 距离.

更多信息

范例

打开所有单元关闭所有单元

基本范例  (2)

两个向量之间的曼哈顿距离:

数值向量之间的曼哈顿距离:

范围  (2)

计算相等长度的任何向量之间的距离:

计算任意精度的向量之间的距离:

应用  (2)

用曼哈顿距离的数据集合:

证明三角形不等性:

属性和关系  (5)

曼哈顿距离是绝对差值的和:

ManhattanDistance 等价于一个差值的 Norm

ManhattanDistance 大于或等于 ChessboardDistance

BrayCurtisDistance 是曼哈顿距离的一个比值:

MeanDeviation 作为 Mean 中一个有刻度的 ManhattanDistance

Wolfram Research (2007),ManhattanDistance,Wolfram 语言函数,https://reference.wolfram.com/language/ref/ManhattanDistance.html.

文本

Wolfram Research (2007),ManhattanDistance,Wolfram 语言函数,https://reference.wolfram.com/language/ref/ManhattanDistance.html.

CMS

Wolfram 语言. 2007. "ManhattanDistance." Wolfram 语言与系统参考资料中心. Wolfram Research. https://reference.wolfram.com/language/ref/ManhattanDistance.html.

APA

Wolfram 语言. (2007). ManhattanDistance. Wolfram 语言与系统参考资料中心. 追溯自 https://reference.wolfram.com/language/ref/ManhattanDistance.html 年

BibTeX

@misc{reference.wolfram_2024_manhattandistance, author="Wolfram Research", title="{ManhattanDistance}", year="2007", howpublished="\url{https://reference.wolfram.com/language/ref/ManhattanDistance.html}", note=[Accessed: 22-November-2024 ]}

BibLaTeX

@online{reference.wolfram_2024_manhattandistance, organization={Wolfram Research}, title={ManhattanDistance}, year={2007}, url={https://reference.wolfram.com/language/ref/ManhattanDistance.html}, note=[Accessed: 22-November-2024 ]}