gives the n Mersenne prime exponent.


MersennePrimeExponent

gives the n Mersenne prime exponent.
Details

- A Mersenne prime exponent is a prime number p for which the Mersenne number
is prime.
- In MersennePrimeExponent[n], n must be a positive integer.
- As of this version of the Wolfram Language, only 49 Mersenne prime exponents have definite ranking. Three more Mersenne prime exponents are known, but their ranking is still unknown. MersennePrimeExponent[n] will attempt to find Mersenne prime exponents for n larger than 49, but cannot be expected to return results in a reasonable time.
Examples
open all close allBasic Examples (1)
Scope (1)
MersennePrimeExponent automatically threads over lists:
Properties & Relations (5)
Mersenne prime exponents generate even perfect numbers:
Triangular numbers of Mersenne primes generate even perfect numbers:
Hexagonal numbers related to Mersenne prime exponents generate even perfect numbers:
Mersenne prime exponents generate superperfect numbers:
A trinomial whose order is a Mersenne prime exponent is primitive modulo 2 if and only if it is irreducible:
See Also
MersennePrimeExponentQ Prime PrimeQ PerfectNumber PerfectNumberQ
Function Repository: MersennePrime
Related Guides
Text
Wolfram Research (2016), MersennePrimeExponent, Wolfram Language function, https://reference.wolfram.com/language/ref/MersennePrimeExponent.html (updated 2025).
CMS
Wolfram Language. 2016. "MersennePrimeExponent." Wolfram Language & System Documentation Center. Wolfram Research. Last Modified 2025. https://reference.wolfram.com/language/ref/MersennePrimeExponent.html.
APA
Wolfram Language. (2016). MersennePrimeExponent. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/ref/MersennePrimeExponent.html
BibTeX
@misc{reference.wolfram_2025_mersenneprimeexponent, author="Wolfram Research", title="{MersennePrimeExponent}", year="2025", howpublished="\url{https://reference.wolfram.com/language/ref/MersennePrimeExponent.html}", note=[Accessed: 13-August-2025]}
BibLaTeX
@online{reference.wolfram_2025_mersenneprimeexponent, organization={Wolfram Research}, title={MersennePrimeExponent}, year={2025}, url={https://reference.wolfram.com/language/ref/MersennePrimeExponent.html}, note=[Accessed: 13-August-2025]}