MersennePrimeExponentQ
Details
- MersennePrimeExponentQ is typically used to test whether an integer is a Mersenne prime exponent.
- A positive integer n is a Mersenne prime exponent if the Mersenne number is prime.
- MersennePrimeExponentQ[n] returns False unless n is manifestly a Mersenne prime exponent.
Examples
open allclose allBasic Examples (2)
Scope (3)
MersennePrimeExponentQ works over integers:
Applications (8)
Basic Applications (3)
Special Sequences (2)
Number Theory (3)
Properties & Relations (10)
Mersenne prime exponents are prime numbers:
Composite numbers cannot be MersennePrimeExponents:
The only even Mersenne prime exponent is :
MersennePrimeExponent gives Mersenne prime exponent:
is a Mersenne prime, where p is a Mersenne prime exponent:
If p is a Mersenne prime exponent, then is a perfect number:
Every even perfect number has the form , where p is a Mersenne prime exponent:
Check that in the representation above p is 5:
Triangular numbers of Mersenne primes are perfect numbers:
Hexagonal numbers related to Mersenne prime exponents are perfect numbers:
Possible Issues (1)
Expressions that represent Mersenne prime exponents but do not evaluate explicitly will give False:
Text
Wolfram Research (2016), MersennePrimeExponentQ, Wolfram Language function, https://reference.wolfram.com/language/ref/MersennePrimeExponentQ.html.
CMS
Wolfram Language. 2016. "MersennePrimeExponentQ." Wolfram Language & System Documentation Center. Wolfram Research. https://reference.wolfram.com/language/ref/MersennePrimeExponentQ.html.
APA
Wolfram Language. (2016). MersennePrimeExponentQ. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/ref/MersennePrimeExponentQ.html