WOLFRAM

is an option for plotting functions that specifies functions to use to determine the placement of mesh divisions.

Details

Examples

open allclose all

Basic Examples  (3)Summary of the most common use cases

Put 5 mesh lines in the direction:

Out[1]=1

Show curves of constant real and imaginary parts of a function:

Out[1]=1

Show intersection points:

Out[1]=1

Applications  (1)Sample problems that can be solved with this function

Define two polynomials:

Use MeshFunctions to find the intercepts:

Out[2]=2

Use MeshFunctions to find the intersections between two functions:

Out[3]=3

Neat Examples  (2)Surprising or curious use cases

A case where Fubini's theorem does not hold [more info]:

Out[1]=1

Real and imaginary parts as mesh functions:

Out[3]=3
Wolfram Research (2007), MeshFunctions, Wolfram Language function, https://reference.wolfram.com/language/ref/MeshFunctions.html.
Wolfram Research (2007), MeshFunctions, Wolfram Language function, https://reference.wolfram.com/language/ref/MeshFunctions.html.

Text

Wolfram Research (2007), MeshFunctions, Wolfram Language function, https://reference.wolfram.com/language/ref/MeshFunctions.html.

Wolfram Research (2007), MeshFunctions, Wolfram Language function, https://reference.wolfram.com/language/ref/MeshFunctions.html.

CMS

Wolfram Language. 2007. "MeshFunctions." Wolfram Language & System Documentation Center. Wolfram Research. https://reference.wolfram.com/language/ref/MeshFunctions.html.

Wolfram Language. 2007. "MeshFunctions." Wolfram Language & System Documentation Center. Wolfram Research. https://reference.wolfram.com/language/ref/MeshFunctions.html.

APA

Wolfram Language. (2007). MeshFunctions. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/ref/MeshFunctions.html

Wolfram Language. (2007). MeshFunctions. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/ref/MeshFunctions.html

BibTeX

@misc{reference.wolfram_2025_meshfunctions, author="Wolfram Research", title="{MeshFunctions}", year="2007", howpublished="\url{https://reference.wolfram.com/language/ref/MeshFunctions.html}", note=[Accessed: 29-March-2025 ]}

@misc{reference.wolfram_2025_meshfunctions, author="Wolfram Research", title="{MeshFunctions}", year="2007", howpublished="\url{https://reference.wolfram.com/language/ref/MeshFunctions.html}", note=[Accessed: 29-March-2025 ]}

BibLaTeX

@online{reference.wolfram_2025_meshfunctions, organization={Wolfram Research}, title={MeshFunctions}, year={2007}, url={https://reference.wolfram.com/language/ref/MeshFunctions.html}, note=[Accessed: 29-March-2025 ]}

@online{reference.wolfram_2025_meshfunctions, organization={Wolfram Research}, title={MeshFunctions}, year={2007}, url={https://reference.wolfram.com/language/ref/MeshFunctions.html}, note=[Accessed: 29-March-2025 ]}