NormalizedSquaredEuclideanDistance

NormalizedSquaredEuclideanDistance[u,v]

给出向量 uv 之间的归一化平方欧氏距离.

更多信息

范例

打开所有单元关闭所有单元

基本范例  (2)

在两个向量之间的归一化平方欧氏距离:

在数值向量之间的归一化平方欧氏距离:

范围  (2)

计算任何等长度向量之间的距离:

计算具有任意精度的向量之间的距离:

应用  (1)

使用归一化平方欧氏距离,对数据进行聚类处理:

属性和关系  (2)

归一化平方欧氏距离包括由范式缩放的平方欧氏距离:

两个向量或者实数的归一化平方欧氏距离位于从0到1的范围内:

Wolfram Research (2010),NormalizedSquaredEuclideanDistance,Wolfram 语言函数,https://reference.wolfram.com/language/ref/NormalizedSquaredEuclideanDistance.html.

文本

Wolfram Research (2010),NormalizedSquaredEuclideanDistance,Wolfram 语言函数,https://reference.wolfram.com/language/ref/NormalizedSquaredEuclideanDistance.html.

CMS

Wolfram 语言. 2010. "NormalizedSquaredEuclideanDistance." Wolfram 语言与系统参考资料中心. Wolfram Research. https://reference.wolfram.com/language/ref/NormalizedSquaredEuclideanDistance.html.

APA

Wolfram 语言. (2010). NormalizedSquaredEuclideanDistance. Wolfram 语言与系统参考资料中心. 追溯自 https://reference.wolfram.com/language/ref/NormalizedSquaredEuclideanDistance.html 年

BibTeX

@misc{reference.wolfram_2024_normalizedsquaredeuclideandistance, author="Wolfram Research", title="{NormalizedSquaredEuclideanDistance}", year="2010", howpublished="\url{https://reference.wolfram.com/language/ref/NormalizedSquaredEuclideanDistance.html}", note=[Accessed: 22-November-2024 ]}

BibLaTeX

@online{reference.wolfram_2024_normalizedsquaredeuclideandistance, organization={Wolfram Research}, title={NormalizedSquaredEuclideanDistance}, year={2010}, url={https://reference.wolfram.com/language/ref/NormalizedSquaredEuclideanDistance.html}, note=[Accessed: 22-November-2024 ]}